(2010•廣安)如圖,若反比例函數(shù)y=-與一次函數(shù)y=mx-2的圖象都經(jīng)過點(diǎn)A(a,2)
(1)求A點(diǎn)的坐標(biāo)及一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)為B,求B點(diǎn)坐標(biāo),并利用函數(shù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

【答案】分析:(1)把y=2代入反比例函數(shù)y=-可得x=-4,即A(-4,2);把A(-4,2)代入一次函數(shù)y=mx-2解得m=-1,可得一次函數(shù)y=mx-2為y=-x-2.
(2)把反比例函數(shù)y=-代入一次函數(shù)y=-x-2即可得B(2,-4),一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍根據(jù)圖象即可求出-4<x<0或x>2.
解答:解:(1)把y=2代入反比例函數(shù)y=-
∴x=-4,
∴A(-4,2).
把A(-4,2)代入一次函數(shù)y=mx-2
解得m=-1
∴一次函數(shù)y=mx-2為y=-x-2.

(2)根據(jù)題意把反比例函數(shù)y=-代入一次函數(shù)y=-x-2

∴B(2,-4)
利用函數(shù)圖象可得使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍是-4<x<0或x>2.
點(diǎn)評(píng):本題考查反比例函數(shù)和一次函數(shù)解析式的確定及一次函數(shù)的值與反比例函數(shù)的值的比較等能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•廣安)如圖,直線y=-x-1與拋物線y=ax2+bx-4都經(jīng)過點(diǎn)A(-1,0)、C(3,-4).
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)P在線段AC上,過點(diǎn)P作x軸的垂線與拋物線相交于點(diǎn)E,求線段PE長(zhǎng)度的最大值;
(3)當(dāng)線段PE的長(zhǎng)度取得最大值時(shí),在拋物線上是否存在點(diǎn)Q,使△PCQ是以PC為直角邊的直角三角形?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,直線y=-x-1與拋物線y=ax2+bx-4都經(jīng)過點(diǎn)A(-1,0)、C(3,-4).
(1)求拋物線的解析式;
(2)動(dòng)點(diǎn)P在線段AC上,過點(diǎn)P作x軸的垂線與拋物線相交于點(diǎn)E,求線段PE長(zhǎng)度的最大值;
(3)當(dāng)線段PE的長(zhǎng)度取得最大值時(shí),在拋物線上是否存在點(diǎn)Q,使△PCQ是以PC為直角邊的直角三角形?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,若反比例函數(shù)y=-與一次函數(shù)y=mx-2的圖象都經(jīng)過點(diǎn)A(a,2)
(1)求A點(diǎn)的坐標(biāo)及一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與反比例函數(shù)圖象的另一交點(diǎn)為B,求B點(diǎn)坐標(biāo),并利用函數(shù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省廣安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廣安)如圖,AB、AC分別是⊙O的直徑和弦,點(diǎn)D為劣弧AC上一點(diǎn),弦DE⊥AB分別交⊙O于E,交AB于H,交AC于F.P是ED延長(zhǎng)線上一點(diǎn)且PC=PF.
(1)求證:PC是⊙O的切線;
(2)點(diǎn)D在劣弧AC什么位置時(shí),才能使AD2=DE•DF,為什么?
(3)在(2)的條件下,若OH=1,AH=2,求弦AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案