【題目】分類討論是一種重要的數(shù)學(xué)方法,如在化簡|a|時,可以這樣分類:當(dāng)a>0時,|a|=a;當(dāng)a=0時,|a|=0;當(dāng)a<0時,|a|=﹣a.用這種方法解決下列問題:

(1)當(dāng)a=5時,求的值.

(2)當(dāng)a=﹣2時,求的值.

(3)若有理數(shù)a不等于零,求的值.

(4)若有理數(shù)a、b均不等于零,試求+的值.

【答案】(1)1;(2)-1;(3)1或-1;(4)2或-2或0

【解析】

(1)直接將a=5代入求出答案;
(2)直接將a=-2代入求出答案;
(3)分別利用a>0a<0分析得出答案;
(4)分別利用當(dāng)a,b是同正數(shù)或當(dāng)a,b是同負(fù)數(shù)或當(dāng)a,b是異號分析得出答案.

解:當(dāng)時,;

當(dāng)時,

若有理數(shù)不等于零,當(dāng)時,,當(dāng)時,;

若有理數(shù)均不等于零,當(dāng),是同正數(shù),,

當(dāng)是同負(fù)數(shù),

當(dāng),是異號,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與y軸相交于點A0,過點A0軸的平行線交直線y=0.5x+1于點B1,過點 B1的平行線交直線y=x+2于點A1,再過點軸的平行線交直線y=0.5x+1于點B2,過點 B2軸的平行線交直線y=x+2于點A2,依此類推,得到直線y=x+2上的點A1 ,A2 ,A3 ,與直線y=0.5x+1上的點B1,B2,B3,則A7B8的長為

A.64 B.128 C.256 D.512

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE把∠BOD分成兩部分;

(1)直接寫出圖中∠AOC的對頂角為   ,∠BOE的鄰補(bǔ)角為   ;

(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形OABC在平面直角坐標(biāo)系中的位置如圖所示頂點A(5,0),OB=,P是對角線OB上的一個動點,D(0,1),當(dāng)CP+DP的值最小時,點P的坐標(biāo)為(  )

A. (,3) B. , C. (1, D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,,,,垂足為E.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張卡片(背面完全相同),分別寫有數(shù)字1、2、﹣1、﹣2,把它們背面朝上洗勻后,甲同學(xué)抽取一張記下這個數(shù)字后放回洗勻,乙同學(xué)再從中抽出一張,記下這個數(shù)字,用字母b、c分別表示甲、乙兩同學(xué)抽出的數(shù)字.
(1)用列表法求關(guān)于x的方程x2+bx+c=0有實數(shù)解的概率;
(2)求(1)中方程有兩個相等實數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:O是直線AB上的一點,是直角,OE平分

(1)如圖1.若.求的度數(shù);

(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);

(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)如圖1,點E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C,求證:∠A=∠D.
(2)如圖2,在邊長為1個單位長度的小正方形所組成的網(wǎng)格中,△ABC的頂點均在格點上. ①求sinB的值;
②畫出△ABC關(guān)于直線l對稱的△A1B1C1(A與A1 , B與B1 , C與C1相對應(yīng)),連接AA1 , BB1 , 并計算梯形AA1B1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+bb0)與坐標(biāo)軸交于AB兩點,與雙曲線y=x0)交于D點,過點DDC⊥x軸,垂足為G,連接OD.已知△AOB≌△ACD

1)如果b=﹣2,求k的值;

2)試探究kb的數(shù)量關(guān)系,并寫出直線OD的解析式.

查看答案和解析>>

同步練習(xí)冊答案