【題目】如圖,將兩張長(zhǎng)為5,寬為1的矩形紙條交叉,讓兩個(gè)矩形對(duì)角線交點(diǎn)重合,且使重疊部分成為一個(gè)菱形.當(dāng)兩張紙條垂直時(shí),菱形周長(zhǎng)的最小值是4,把一個(gè)矩形繞兩個(gè)矩形重合的對(duì)角線交點(diǎn)旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過(guò)程中,得出所有重疊部分為菱形的四邊形中,周長(zhǎng)的最大值是(  )

A. 8B. 10C. 10.4D. 12

【答案】C

【解析】

作出圖形,確定當(dāng)兩矩形紙條有一條對(duì)角線互相重合時(shí),菱形的周長(zhǎng)最大,設(shè)菱形的邊長(zhǎng)為x,表示出AB,然后利用勾股定理列式進(jìn)行計(jì)算求出x,再根據(jù)菱形的四條邊都相等解答.

如圖,菱形的周長(zhǎng)最大,

設(shè)菱形的邊長(zhǎng)AC=x,則AB=5-x,

RtABC中,AC2=AB2+BC2,

x2=5-x2+12

解得x=2.6,

所以,菱形的最大周長(zhǎng)=2.6×4=10.4

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過(guò)抽取撲克牌的游戲來(lái)決定誰(shuí)去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.

1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說(shuō)明;

2)乙同學(xué)將甲同學(xué)的方案修改為只用2、35、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知)的函數(shù),表1中給出了幾組的對(duì)應(yīng)值:

1

1

2

3

6

3

2

1

1)以表中各對(duì)對(duì)應(yīng)值為坐標(biāo),在圖1的直角坐標(biāo)系中描出各點(diǎn),用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學(xué)過(guò)的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;

2)如果一次函數(shù)圖像與(1)中圖像交于兩點(diǎn),在第一、四象限內(nèi)當(dāng)在什么范圍時(shí),一次函數(shù)的值小于(1)中函數(shù)的值?請(qǐng)直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、C、F、B四點(diǎn)在一條直線上,AB=DE,ACBD,EFBD,垂足分別為點(diǎn)C、點(diǎn)F,CD=BF.

求證:(1)ABC≌△EDF;

(2)ABDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)都在反比例函數(shù)的圖象上.

1)求的值;

2)如果軸上一點(diǎn),軸上一點(diǎn),以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,試求直線的函數(shù)表達(dá)式;

3)將線段沿直線進(jìn)行對(duì)折得到線段,且點(diǎn)始終在直線上,當(dāng)線段軸有交點(diǎn)時(shí),則的取值范圍為_______(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,CDAB,

(1)圖①中共有     對(duì)相似三角形,寫出來(lái)分別為         (不需證明);

(2)已知AB=10,AC=8,請(qǐng)你求出CD的長(zhǎng);

(3)(2)的情況下,如果以ABx,CDy,點(diǎn)D為坐標(biāo)原點(diǎn)O,建立直角坐標(biāo)系(如圖②),若點(diǎn)P從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿線段CB運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿線段BA運(yùn)動(dòng),其中一點(diǎn)最先到達(dá)線段的端點(diǎn)時(shí),兩點(diǎn)即刻同時(shí)停止運(yùn)動(dòng);設(shè)運(yùn)動(dòng)時(shí)間為t,是否存在點(diǎn)P,使以點(diǎn)B,P,Q為頂點(diǎn)的三角形與ABC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為改善辦學(xué)條件,計(jì)劃采購(gòu)A、B兩種型號(hào)的空調(diào),已知采購(gòu)3臺(tái)A型空調(diào)和2臺(tái)B型空調(diào),需費(fèi)用39000元;4臺(tái)A型空調(diào)比5臺(tái)B型空調(diào)的費(fèi)用多6000元.

(1)求A型空調(diào)和B型空調(diào)每臺(tái)各需多少元;

(2)若學(xué)校計(jì)劃采購(gòu)A、B兩種型號(hào)空調(diào)共30臺(tái),且A型空調(diào)的臺(tái)數(shù)不少于B型空調(diào)的一半,兩種型號(hào)空調(diào)的采購(gòu)總費(fèi)用不超過(guò)217000元,該校共有哪幾種采購(gòu)方案?

(3)在(2)的條件下,采用哪一種采購(gòu)方案可使總費(fèi)用最低,最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線yax2a0)與一次函數(shù)ykx+b的圖象相交于A(﹣1,﹣1),B2,﹣4)兩點(diǎn),點(diǎn)P是拋物線上不與A,B重合的一個(gè)動(dòng)點(diǎn),點(diǎn)Qy軸上的一個(gè)動(dòng)點(diǎn).

1)請(qǐng)直接寫出a,k,b的值及關(guān)于x的不等式ax2kx2的解集;

2)當(dāng)點(diǎn)P在直線AB上方時(shí),請(qǐng)求出△PAB面積的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

3)是否存在以P,QA,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出PQ的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)(a、b、c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①當(dāng)時(shí),;②;③;④3a+c>0,其中正確的是( )

A. ①③B. ①④C. ②③D. ②④

查看答案和解析>>

同步練習(xí)冊(cè)答案