【題目】如圖,是等邊三角形,分別是邊上的點,且,且交于點,且,垂足為.
(1)求證: ;
(2)若,求的長度.
【答案】(1)證明見解析;(2)2
【解析】
(1)證明△ACE≌△CBF(SAS),即可證得結(jié)論;
(2)利用由(1)知∠ACE=∠CBF,求出∠BPE=60°,又EG⊥BF,即∠PGE=90°,得到∠GEP=30°,根據(jù)在直角三角形中,30°所對的直角邊等于斜邊的一半即可求得答案.
∵△ABC為等邊三角形,
∴AC =BC,∠A=∠BCF=60°,
在△ACE和△CBF中,,
∴△ACE≌△CBF(SAS),
∴∠ACE=∠CBF;
(2)由(1)知∠ACE=∠CBF,
又∠ACE +∠BCE=∠ACB=60°,
∴∠CBF +∠BCE =60°,
∵∠CBF +∠BCE =∠BPE,
∴∠BPE=60°,
∵EG⊥BF,即∠PGE=90°,
∴∠GEP=30°,
∴在Rt△BCE中,
PE=2PG=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E為CD上一點,F為BC延長線上一點,且CE=CF.
(1)求證:△BCE≌△DCF;
(2)若∠FDC=30°,求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC,設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)探究線段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?并說明理由;
(3)當(dāng)點O在邊AC上運動時,四邊形BCFE可能是菱形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知二次函數(shù)經(jīng)過點B(3,0),C(0,3),D(4,-5)
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)若P是拋物線上一點,且S△ABP=S△ABC,這樣的點P有幾個請直接寫出它們的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(在的左側(cè)),且點坐標(biāo)為.平行于軸的直線過點.
求一次函數(shù)與二次函數(shù)的解析式;
判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;
把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于,兩點,一次函數(shù)圖象交軸于點.當(dāng)為何值時,過,,三點的圓的面積最。孔钚∶娣e是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點 ,與直線相交于點 ,
(1)求直線 的函數(shù)表達(dá)式;
(2)求 的面積;
(3)在 軸上是否存在一點 ,使是等腰三角形.若不存在,請說明理由;若存在,請直接寫出點 的坐標(biāo)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com