分析 由一次函數(shù)y=kx+1的圖象交y軸于點(diǎn)D,得出點(diǎn)D的坐標(biāo)為(0,1);設(shè)OC=a,根據(jù)$\frac{OC}{CA}$=$\frac{1}{2}$得到CA=2OC=2a,那么OA=3a=OB,P(3a,-3a).根據(jù)△DOC∽△DBP,利用相似三角形對(duì)應(yīng)邊成比例得出$\frac{1}{1+3a}$=$\frac{a}{3a}$=$\frac{1}{3}$,求出a=$\frac{2}{3}$,那么P(2,-2),再根據(jù)待定系數(shù)法求出m=2×(-2)=-4;根據(jù)相似三角形面積之比等于相似比的平方得出$\frac{{S}_{△APC}}{{S}_{△DPB}}$=($\frac{AP}{DB}$)2=$\frac{4}{9}$.
解答 解:∵一次函數(shù)y=kx+1的圖象交y軸于點(diǎn)D,
令x=0,得y=1,
∴點(diǎn)D的坐標(biāo)為(0,1);
設(shè)OC=a,則CA=2OC=2a,OA=3a=OB,P(3a,-3a).
∵OC∥BP,
∴△DOC∽△DBP,
∴$\frac{DO}{DB}$=$\frac{OC}{BP}$,即$\frac{1}{1+3a}$=$\frac{a}{3a}$=$\frac{1}{3}$,
∴a=$\frac{2}{3}$,
∴P(2,-2).
∵反比例函數(shù)y=$\frac{m}{x}$(x>0)的圖象過點(diǎn)P,
∴m=2×(-2)=-4;
$\frac{{S}_{△APC}}{{S}_{△DPB}}$=($\frac{AP}{DB}$)2=($\frac{2}{3}$)2=$\frac{4}{9}$.
故答案為-4;$\frac{4}{9}$.
點(diǎn)評(píng) 本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,反比例函數(shù)解析式的確定,相似三角形的判定與性質(zhì),圖形的面積求法等知識(shí),求出點(diǎn)P的坐標(biāo)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com