精英家教網 > 初中數學 > 題目詳情
如圖,二次函數的圖象與x軸相交于點A(-3,0)、B(-1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數y=kx-4k(k≠0)的圖象過點P交x軸于點Q.
(1)求該二次函數的解析式;
(2)當點P的坐標為(-4,m)時,求證:∠OPC=∠AQC;
(3)點M,N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M,N中有一點到達Q點時,兩點同時停止運動,設運動時間為t秒.連接AN,當△AMN的面積最大時,
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點P的坐標;若不能,請說明你的理由.

【答案】分析:(1)利用交點式求出拋物線的解析式;
(2)證明四邊形POQC是平行四邊形,則結論得證;
(3)①求出△AMN面積的表達式,利用二次函數的性質,求出△AMN面積最大時t的值.注意:由于自變量取值范圍的限制,二次函數并不是在對稱軸處取得最大值;
②由于直線PQ上的點到∠AQC兩邊的距離不相等,則直線PQ不能平分∠AQC,所以直線PQ不能垂直平分線段MN.
解答:(1)解:設拋物線的解析式為:y=a(x+3)(x+1),
∵拋物線經過點C(0,3),
∴3=a×3×1,解得a=1.
∴拋物線的解析式為:y=(x+3)(x+1)=x2+4x+3.

(2)證明:在拋物線解析式y(tǒng)=x2+4x+3中,當x=-4時,y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x軸.
∵一次函數y=kx-4k(k≠0)的圖象交x軸于點Q,當y=0時,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x軸,
∴四邊形POQC是平行四邊形,
∴∠OPC=∠AQC.

(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答圖1所示,過點N作ND⊥x軸于點D,則ND∥OC,

∴△QND∽△QCO,
,即,解得:ND=3-t.
設S=S△AMN,則:
S=AM•ND=•3t•(3-t)=-(t-2+
又∵AQ=7,∴點M到達終點的時間為t=,
∴S=-(t-2+(0<t≤).
∵-<0,,且x<時,y隨x的增大而增大,
∴當t=時,△AMN的面積最大.
②假設直線PQ能夠垂直平分線段MN,則有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
此時點M與點O重合,如答圖2所示:

設PQ與OC交于點E,由(2)可知,四邊形POQC是平行四邊形,
∴OE=CE.
∵點E到CQ的距離小于CE,
∴點E到CQ的距離小于OE,而OE⊥x軸,
∴PQ不是∠AQC的平分線,這與假設矛盾.
∴直線PQ不能垂直平分線段MN.
點評:本題是二次函數綜合題型,考查了二次函數的圖象與性質、待定系數法、一次函數、相似三角形、平行四邊形、角平分線的性質、二次函數的最值等知識點.試題難度不大,需要注意的是(3)①問中,需要注意在自變量取值區(qū)間上求最大值,而不能機械地套用公式.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.精英家教網
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數學 來源:2011-2012年北京市華夏女子中學九年級第一學期期中考試數學卷 題型:解答題

如圖是二次函數的圖象,其頂點坐標為M(1,-4).

【小題1】(1)求出圖象與軸的交點A,B的坐標;
【小題2】(2)在二次函數的圖象上是否存在點P,使,若存在,求出P點的坐標;若不存在,請說明理由;
【小題3】(3)將二次函數的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結合這個新的圖象回答:當直線與此圖象有兩個公共點時,的取值范圍.

查看答案和解析>>

科目:初中數學 來源:2013年上海市中考數學模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數學 來源:2011年上海市浦東新區(qū)中考數學二模試卷(解析版) 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習冊答案