將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,它們的較短直角邊長為3.
(1)將△ECD沿直線l向左平移到圖(2)的位置,使E點(diǎn)落在AB上,則CC′=______
【答案】
分析:(1)根據(jù)題意:E′是AB的中點(diǎn),即BC′=
;則CC′=BC-BC′=
;
(2)△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)即∠ECE’的度數(shù);易得:∠ECE′=∠BAC=30°;
(3)思路:根據(jù)條件,證明△AEF≌△D′BF進(jìn)而得出AF=FD′.
解答:(1)解:CC′=3-
.
理由如下:∵EC=3,∠A=30°,
∴AC=3
,
∴AE=3
-3,
∴CC′=EE′=AE×tan30°=3-
;
(2)解:△ECD繞點(diǎn)C旋轉(zhuǎn)的度數(shù)即∠ECE′的度數(shù);
∵∠ABC=60°,BC=CE′=3,AB=6,
∴△E′BC是等邊三角形,
∴BC=E′C=E′B=3,
∴AE′=E′C=3,
∴∠E′AC=∠E′CA,
∴∠ECE′=∠BAC=30°;
(3)證明:在△AEF和△D′BF中,
∵AE=AC-EC,D′B=D′C-BC,
又∵AC=D′C,EC=BC,
∴AE=D′B,
又∵∠AEF=∠D′BF=180°-60°=120°,∠A=∠CD′E=30°,
∴△AEF≌△D′BF,
∴AF=FD′.
點(diǎn)評(píng):本題考查平移、旋轉(zhuǎn)的性質(zhì);平移的基本性質(zhì)是:①平移不改變圖形的形狀和大;②經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變,兩組對(duì)應(yīng)點(diǎn)連線的交點(diǎn)是旋轉(zhuǎn)中心.