(本題12分)如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當=150°時,試判斷△AOD 的形狀,并說明理由;
(3)探究:當為多少度時,△AOD是等腰三角形。
(1)證明:∵△BOC≌△ADC ,
∴OC=DC !1分
∵∠OCD= ,
∴△OCD是等邊三角形!1分
(2)解:△AOD是Rt△ 。 ——1分
理由如下:
∵△OCD是等邊三角形 ,
∴∠ODC= ,
∵△BOC≌△ADC ,∠α= ,
∴∠ADC=∠BOC=∠α= ,
∴∠ADO=∠ADC-∠ODC=-= ,
∴△AOD是Rt△ !2分
(3)解:
∵△OCD是等邊三角形 ,
∴∠COD=∠ODC=。
∵∠AOB= ,∠ADC=∠BOC=α ,
∴∠AOD=-∠AOB-∠BOC-∠COD=--α-=-α ,
∠ADO=∠ADC-∠ODC=α- ,
∴∠OAD=-∠AOD-∠ADO=-(-α)-(α-)= 。
①當∠AOD=∠ADO時,
-α=α- , ∴α= !2分
②當∠AOD=∠OAD時,
-α= , ∴α= 。——2分
③當∠ADO=∠OAD時,
α-= , ∴α= !2分
綜上所述:當α=或或時,△AOD是等腰三角形!1分
【解析】略
科目:初中數(shù)學 來源: 題型:
(本題12分) 如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,,B點坐標為(4,0).點是邊上一點,且.點、分別從、同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)P交AD于點Q.⊙E半徑為,設(shè)運動時間為秒。
(1)求直線BC的解析式。
(2)當為何值時,?
(3)在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標。如果不相切,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題12分)如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點, ∠AOB= 110°,
∠BOC= ,△BOC ≌△ADC,∠OCD=60°,連接OD。
(1)求證:△OCD是等邊三角形;
(2)當=150°時,試判斷△AOD 的形狀,并說明理由;
(3)探究:當為多少度時,△AOD是等腰三角形。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題12分)如圖,正方形ABCD的邊長是2,邊BC在x軸上,邊AB在y軸上,,將一把三角尺如圖放置,其中M為AD的中點,逆時針旋轉(zhuǎn)三角尺.
(1)當三角尺的一邊經(jīng)過C點時,此時三角尺的另一邊和AB邊交于點,求此時直線PM的解析式;
(2)繼續(xù)旋轉(zhuǎn)三角尺,三角尺的一邊與x軸交于點G, 三角尺的另一邊與AB交于,PM的延長線與CD的延長線交于點F,若三角形GF的面積為4,求此時直線PM的解析式;
(3)當旋轉(zhuǎn)到三角尺的一邊經(jīng)過點B,另一直角邊的延長線與x軸交于點G,,求此時三角形GOF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年人教版九年級第一學期期末考試數(shù)學卷 題型:解答題
(本題12分)如圖,已知拋物線y=x2+3與x軸交于點A、B,與直線y=x+b相交于點B、C,直線y=x+b與y軸交于點E.
(1)寫出直線BC的解析式;
(2)求△ABC的面積;
(3)若點M在線段AB上以每秒1個單位長度的速度從A向B運動(不與A、B重合),同時,點N在射線BC上以每秒2個單位長度的速度從B向C運動。設(shè)運動時間為t秒,請寫出△MNB的面積s與t的函數(shù)關(guān)系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com