【題目】為了解某校全體同學喜歡的NBA籃球明星的情況,小明抽取了七年級一班50名同學進行調查,得到最喜歡的NBA籃球明星的調查結果如下:
A A B C D A B A A C B A A C B C A A B C A A B A C
D B A C D B A C D A A B C D A C B A C A C D C A A
其中:A代表姚明,B代表科比,C代表詹姆斯,D代表麥迪.
填表:
明星 | 劃記 | 人數(shù) |
A | ||
B | ||
C | ||
D |
(2)該班同學喜歡最多的是誰?
(3)你認為小明所選取的樣本是隨機調查的樣本嗎?
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1、a2、a3、a4、…滿足下列條件:a1=﹣1,a2=﹣|a1+2|,a3=﹣|a2+3|,a4=﹣|a3+4|,…,an+1=﹣|an+n+1|(n為正整數(shù))依此類推,則a2019的值為( )
A. ﹣1009B. ﹣1010C. ﹣2019D. ﹣2020
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】環(huán)境空氣質量問題已經成為人們日常生活所關心的重要問題,我國新修訂的《環(huán)境空氣質量標準》中增加了PM2.5檢測指標,“PM2.5”是指大氣中危害健康的直徑小于或等于2.5微米的顆粒物,2.5微米即0.0000025米.用科學記數(shù)法表示0.0000025為( )
A.2.5×10﹣5
B.2.5×105
C.2.5×10﹣6
D.2.5×106
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A、B、C的坐標分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉90°得到線段PF,連接FB.若點P運動的時間為t秒(0≤t≤6),設△PBF的面積為S;
①求S與t的函數(shù)關系式;
②當t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在同一平面內,兩條平行景觀長廊l1和l2間有一條“U”形通道,其中AB段與景觀長廊l1成45°角,長為20m;BC段與景觀長廊垂直,長為10m,CD段與景觀長廊l2成60°角,長為10m,求兩景觀長廊間的距離(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,菱形OABC的邊OA在x軸正半軸上,OA=10,cos∠COA=.一個動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OA方向運動,過點P作PQ⊥OA,交折線段OC﹣CB于點Q,以PQ為邊向右作正方形PQMN,點N在射線OA上,當P點到達A點時,運動結束.設點P的運動時間為t秒(t>0).
(1)C點的坐標為 ,當t= 時N點與A點重合;
(2)在整個運動過程中,設正方形PQMN與菱形OABC的重合部分面積為S,直接寫出S與t之間的函數(shù)關系式和相應的自變量t的取值范圍;
(3)如圖2,在運動過程中,過點O和點B的直線將正方形PQMN分成了兩部分,請問是否存在某一時刻,使得被分成的兩部分中有一部分的面積是菱形面積的?若存在,請求出對應的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一時刻的陽光下,小華的影子比小東的影子長,那么在同一路燈下,他們的影子為( 。
A.小華比小東長
B.小華比小東短
C.小華與小東一樣長
D.無法判斷誰的影子長
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com