如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.則下列結論:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.

其中正確的是________.

①②③
分析:根據(jù)等邊三角形的三邊都相等,三個角都是60°,可以證明△ACD與△BCE全等,根據(jù)全等三角形對應邊相等可得AD=BE,所以①正確,對應角相等可得∠CAD=∠CBE,然后證明△ACP與△BCQ全等,根據(jù)全等三角形對應角相等可得PC=PQ,從而得到△CPQ是等邊三角形,再根據(jù)等腰三角形的性質可以找出相等的角,從而證明PQ∥AE,所以②正確;根據(jù)全等三角形對應邊相等可以推出AP=BQ,所以③正確,根據(jù)③可推出DP=EQ,再根據(jù)△DEQ的角度關系DE≠DP.
解答:∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠ECD=60°,
∴180°-∠ECD=180°-∠ACB,
即∠ACD=∠BCE,
在△ACD與△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE,故①小題正確;
∵△ACD≌△BCE(已證),
∴∠CAD=∠CBE,
∵∠ACB=∠ECD=60°(已證),
∴∠BCQ=180°-60°×2=60°,
∴∠ACB=∠BCQ=60°,
在△ACP與△BCQ中,,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,故③小題正確;PC=QC,
∴△PCQ是等邊三角形,
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ∥AE,故②小題正確;
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④小題錯誤.
綜上所述,正確的是①②③.
故答案為:①②③.
點評:本題考查了等邊三角形的性質,全等三角形的判定與性質,以及平行線的判定,需要多次證明三角形全等,綜合性質較強,但難度不是很大,是熱點題目,仔細分析圖形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,C為線段AE上一動點,(不與A,E重合),在AE同側分別作等邊三角形ABC和CDE.則以下結論:①AD=BE  ②CP=CQ  ③AP=BQ   ④DE=DP  ⑤PQ∥AE中正確的有
①②③⑤
.并證明其中的一個結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與點A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.
求證:△PCQ為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與A,E重合)在AE同側分別作等邊△ABC和等邊△CDE,AD與BE相交于點O,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.請你寫出三個正確的結論:
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°

查看答案和解析>>

同步練習冊答案