如圖所示,⊙和⊙內(nèi)切于點(diǎn)E,⊙的弦AB過(guò)⊙的圓心,交⊙于點(diǎn)C,D,且AC∶CD∶DB=2∶4∶3,則⊙與⊙的半徑之比為_(kāi)_______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:黃岡重點(diǎn)作業(yè) 初三數(shù)學(xué)(下) 題型:044
如圖所示,⊙O1和⊙O2內(nèi)切于點(diǎn)A,⊙O2的弦BC經(jīng)過(guò)⊙O1上一點(diǎn)D,AB、AC分別交⊙O1于E、F,AD平分∠BAC.
(1)求證:BC是⊙O1的切線;
(2)若⊙O1與⊙O2的半徑之比等于2∶3,BD=2,DF=,求AB和AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 九年級(jí)下冊(cè) 北師大課標(biāo) 題型:013
如圖所示,兩個(gè)半圓內(nèi)切于C,AC,BC分別是大圓和小圓的直徑,大圓的弦PC交小圓于Q,且PC與AC夾角為,AB=1,則PQ的長(zhǎng)為
A.
B.
C.
D.以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆四川省營(yíng)山縣九年級(jí)上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分8分)
某學(xué)校要在圍墻旁建一個(gè)長(zhǎng)方形的中藥材種植實(shí)習(xí)苗圃,苗圃的一邊靠圍墻(墻的長(zhǎng)度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長(zhǎng)方形ABCD。已知木欄總長(zhǎng)為120米,設(shè)AB邊的長(zhǎng)為x米,長(zhǎng)方形ABCD的面積為S平方米.
【小題1】(1)求S與x之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).當(dāng)x為何值時(shí),S取得最值(請(qǐng)指出是最大值還是最小值)?并求出這個(gè)最值;
【小題2】(2)學(xué)校計(jì)劃將苗圃內(nèi)藥材種植區(qū)域設(shè)計(jì)為如圖所示的兩個(gè)相外切的等圓,其圓心分別為和,且到AB、BC、AD的距離與到CD、BC、AD的距離都相等,并要求在苗圃內(nèi)藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學(xué)們參觀學(xué)習(xí).當(dāng)(l)中S取得最值時(shí),請(qǐng)問(wèn)這個(gè)設(shè)計(jì)是否可行?若可行,求出圓的半徑;若不可行,清說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com