(2002•泉州)某種商品原來的進價為100元,售價為120元,若進價降低了10%,售價不變,則現(xiàn)在的利潤是    元(商品的利潤=商品的售價-商品的進價).
【答案】分析:根據(jù)題意分別明確售價和進價后易列式求解.
解答:解:設現(xiàn)在的利潤是x元,
則100(1-10%)+x=120,
解得x=30.
故填30.
點評:本題考查一元一次方程的應用,關鍵在于找出題目中的等量關系,根據(jù)等量關系列出方程解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2002•泉州)某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2002•泉州)某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2;
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年福建省泉州市中考數(shù)學試卷(解析版) 題型:解答題

(2002•泉州)某中學有一塊長為a米,寬為b米的矩形場地,計劃在該場地上修筑寬都為2米的兩條互相垂直的道路,余下的四塊矩形小場地建成草坪.
(1)如圖,請分別寫出每條道路的面積(用含a或含b的代數(shù)式表示);
(2)已知a:b=2:1,并且四塊草坪的面積之和為312米2,試求原來矩形場地的長與寬各為多少米?
(3)在(2)的條件下,為進一步美化校園,根據(jù)實際情況,學校決定對整個矩形場地作如下設計(要求同時符合下述兩個條件):
條件①:在每塊草坪上各修建一個面積盡可能大的菱形花圃(花圃各邊必須分別與所在草坪的對角線平行),并且其中有兩個花圃的面積之差為13米2
條件②:整個矩形場地(包括道路、草坪、花圃)為軸對稱圖形.
請你畫出符合上述設計方案的一種草圖(不必說明畫法與根據(jù)),并求出每個菱形花圃的面積.

查看答案和解析>>

同步練習冊答案