【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.
(1)求證:∠DAF=∠CDE;
(2)求證:△ADF∽△DEC;
(3)若AE=6,AD=8,AB=7,求AF的長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】
(1)先根據(jù)四邊形ABCD是平行四邊形,得出∠B=∠ADC,再由∠AFE=∠B可得出∠AFE=∠ADC,通過等量代換可得出∠DAF=∠CDE;
(2)由四邊形ABCD是平行四邊形,可得出AD∥BC,∠ADE=∠CED,再根據(jù)∠DAF=∠CDE,故可得出結(jié)論;
(3)先由四邊形ABCD是平行四邊形,可得出AD∥BC,CD=AB=4,再由AE⊥BC,得出AE⊥AD,由勾股定理求出DE的長,由△ADF∽△DEC可得出兩三角形的邊對應(yīng)成比例,進而可得出AF的長.
解:(1)證明:
∵四邊形ABCD是平行四邊形
∴∠B=∠ADC
∵∠AFE=∠B,∴∠AFE=∠ADC
∵∠AFE=∠1+∠2,∠ADC=∠3+∠2
∴∠1+∠2=∠3+∠2,即∠1=∠3
∴∠DAF=∠CDE
(2)證明:∵四邊形ABCD是平行四邊形
∴AD∥BC,∴∠2=∠4
由(1)得∠1=∠3 ∴△ADF∽△DEC
(3)∵AE⊥BC,∴AE⊥AD
∴DE=
由(2)可知:△ADF∽△DEC,CD=AB=7
∴
∴
∴AF=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點A順時針旋轉(zhuǎn)得到△ADE(點B,C的對應(yīng)點分別是D,E),當(dāng)點E在BC邊上時,連接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))
(1)數(shù)軸上點B對應(yīng)的數(shù)是______.
(2)經(jīng)過幾秒,點M、點N分別到原點O的距離相等?
(3)當(dāng)點M運動到什么位置時,恰好使AM=2BN?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
根據(jù)以上信息解決下列問題:
(1) , ;
(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項目的名學(xué)生中隨機選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下面四個結(jié)論:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四邊形DEOF,其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,正方形OABC的頂點A和C分別在x軸和y軸正半軸上,點B坐標(biāo)為(3,3),拋物線y=﹣x2+bx+c過點A、C,交x軸負(fù)半軸于點D,與BC邊的另一個交點為E,拋物線的頂點為M,對稱軸交x軸于點N.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點P在直線MN上,求當(dāng)PE+PA的值最小時點P的坐標(biāo);
(3)如圖2,探索在x軸是否存在一點F,使∠CFO=∠CDO﹣∠CAO?若存在,求點F的坐標(biāo);不存在,說明理由;
(4)將拋物線沿y軸方向平移m個單位后,頂點為Q,若QO平分∠CQN,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB交于點D,則AD的長為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一定數(shù)目的點或大小相同的圓在等距離的排列下可以形成一個等邊三角形數(shù)陣.古希臘著名數(shù)學(xué)家畢達哥拉斯用數(shù),,,,,……這些數(shù)量的(石子),都成功的排成了等邊三角形數(shù)陣..
(問題提出)結(jié)果等于多少?
在圖1所示的等邊三角形數(shù)陣中,前行有個圓圈,前行有個圓圈,即,前行有個圓圈,即,…,則前行所有圓圈個數(shù)總和為
將圖1旋轉(zhuǎn)至圖2,觀察這兩個三角形數(shù)陣中同一行圓圈個數(shù)(如第行的圓圈個數(shù)分別為個,個),發(fā)現(xiàn)同一行圓圈個數(shù)之和均為___________個,由此可得兩個圖前行圓圈個數(shù)總和為:___________,因此,___________.
(問題延伸)結(jié)果等于多少?
圖3
圖4
在圖3所示的等邊三角形數(shù)陣中,第行圓圈中的數(shù)為,即,第行兩個圓圈中數(shù)字的和為.即…,第行個圓圈中數(shù)字的和為(共個).即.這樣,該三角形數(shù)陣中所有圓圈中數(shù)字的和為.
將該三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖4所示的三個三角形數(shù)陣,觀察這三個三角形數(shù)陣中各行同一位置上圓圈中的數(shù)字(如第行的第一個圓圈中的數(shù)字分別為,,),發(fā)現(xiàn)相同位置上三個圓圈中數(shù)字之和均為___________,由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)字的總和為:___________,因此,___________.
(規(guī)律應(yīng)用)
根據(jù)以上發(fā)現(xiàn),計算:的結(jié)果為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(結(jié)果都保留根號)
(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com