已知:一條拋物線的開口向上,頂點為A(-2,0),與y軸相交于點B,過點B作BC∥x軸,交拋物線于點C,過點C作CD∥AB,交x軸于點D.
(1)求點D的坐標.
(2)試探索:AC與BD能否互相垂直?如果能,請求出以這條拋物線為圖象的二次函數(shù)的解析式;如果不能,請說明理由.

解:(1)根據(jù)題意,得點B、C關于直線x=-2對稱,點B的橫坐標為0,
∴點C的橫坐標為-4.
∴BC=4.
∵BC∥AD,CD∥AB,
∴四邊形ABCD是平行四邊形.
∴AD=4.
∴點D的坐標為(-6,0).

(2)能.
要使AC與BD互相垂直,必須使平行四邊形ABCD是菱形,
即AB=BC=4.
∵AO=2,∴,即點B的坐標為(0,).
設所求的二次函數(shù)的解析式為y=a(x+2)2
代入點B的坐標,得

∴當二次函數(shù)的解析式為時,AC⊥BD.
分析:(1)本題需先求出點C的橫坐標,再通過證明四邊形ABCD是平行四邊形,求出AD的長即可得出點D的坐標.
(2)本題需先根據(jù)題意求出BO的長,即可得出點B的坐標,然后把點B的坐標代入二次函數(shù)的解析式求出a的值,即可得出結果.
點評:本題主要考查了二次函數(shù)的綜合應用,在解題時要能把二次函數(shù)的圖象和性質(zhì)與平行四邊形及菱形的性質(zhì)相結合是本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數(shù)表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(25):2.7 最大面積是多少(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數(shù)表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第34章《二次函數(shù)》中考題集(28):34.4 二次函數(shù)的應用(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數(shù)表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(28):6.4 二次函數(shù)的應用(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數(shù)表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(26):23.5 二次函數(shù)的應用(解析版) 題型:解答題

已知直角坐標系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形.
(1)求滿足條件的所有點B的坐標;
(2)求過O,A,B三點且開口向下的拋物線的函數(shù)表達式(只需求出滿足條件的一條即可);
(3)在(2)中求出的拋物線上存在點P,使得以O,A,B,P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標及相應梯形的面積.

查看答案和解析>>

同步練習冊答案