請(qǐng)你寫出一個(gè)既要運(yùn)用乘法公式又要用提取公因式法分解因式的多項(xiàng)式,你寫的
多項(xiàng)式是 (寫出一個(gè)即可)(原創(chuàng))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知P=3xy-8x+1,Q=x-2xy-2,當(dāng)x≠0時(shí),3P-2Q=7恒成立,則y的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有兩個(gè)圓,⊙的半徑等于地球的半徑,⊙的半徑等于一個(gè)籃球的半徑,現(xiàn)將兩個(gè)圓都向外膨脹(相當(dāng)于作同心圓),使周長(zhǎng)都增加1米,則半徑伸長(zhǎng)的較多的圓是( )
A、⊙ B、⊙ C、兩圓的半徑伸長(zhǎng)是相同的 D、無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xoy中,拋物線與x軸,y軸的交點(diǎn)分別為點(diǎn)A,點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫出計(jì)算過(guò)程;
(3)當(dāng)0<t<時(shí),△PQF的面積是否總為定值?若是,求出此定值,若不是,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫出解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
拋物線y=x2一3x+2與y軸交點(diǎn)、與x軸交點(diǎn)、及頂點(diǎn)的坐標(biāo)連接而成的四邊形的面積是( ) (原創(chuàng))
A.1 B. C.2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法)
(1)作∠ABC的平分線BD交AC于點(diǎn)D;
(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F。
由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?(原創(chuàng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問(wèn)題,不過(guò)當(dāng)時(shí)古希臘人還沒(méi)有尋求到它的求根公式,只能用圖解等方法來(lái)求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:以和b為兩直角邊做Rt△ABC,再在斜邊上截取BD=,則AD的長(zhǎng)就是所求方程的解。
(1)請(qǐng)利用所給的線段和線段b,作出方程的解。
(2)說(shuō)說(shuō)上述求法的不足之處
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com