【題目】(1)育德中學(xué)800名學(xué)生參加第二十屆運動會開幕式大型表演,道具選用紅黃兩色錦繡手幅.已知紅色手幅每個4元;黃色手幅每個2.5元;購買800個道具共花費2420元,那么兩種手幅各多少個?
(2)學(xué)校計劃制作1000個吉祥物作為運動會紀念.現(xiàn)有甲、乙兩個工廠可以生產(chǎn)這種吉祥物.
甲工廠報價:不超過400個時每個吉祥物20元,400個以上超過部分打七折;但因生產(chǎn)條件限制,截止到學(xué)校交貨日期只能完成800個;乙工廠報價每個吉祥物18元,但需運費400元.問:學(xué)校怎樣安排生產(chǎn)可以使總花費最少,最少多少錢?
【答案】(1)紅色手幅280個,黃色手幅520個;(2)學(xué)校安排在甲廠生產(chǎn)800件,乙廠生產(chǎn)200件,可以使總費用最少,最少17600元.
【解析】
(1)設(shè)紅色手幅x個,黃色手幅y個,根據(jù)購買總個數(shù)和花費總錢數(shù),列一元二次方程組解答;
(2)分兩種方案進行計算,①設(shè)甲廠生產(chǎn)x(0≤x≤400)個,總費用為w,列函數(shù)關(guān)系式,利用增減性分析最值;②設(shè)甲廠生產(chǎn)x(400<x≤800)個,總費用為w,列函數(shù)關(guān)系式,利用增減性分析最值
解:(1)設(shè)紅色手幅x個,黃色手幅y個,由題意可得
解得
答:紅色手幅280個,黃色手幅520個;
(2)①設(shè)在甲廠生產(chǎn)x(0≤x≤400)個,則在乙廠生產(chǎn)(1000-x)個,總費用為w
根據(jù)題意:
∵2>0
∴w隨x的增大而增大
當x=0時,w有最小值為18400,
此時,在乙廠生產(chǎn)1000件,總費用最少,為18400元;
②設(shè)在甲廠生產(chǎn)x(400<x≤800)個,則在乙廠生產(chǎn)(1000-x)個,總費用為w
根據(jù)題意:
∵-4<0
∴w隨x的增大而減小
當x=800時,w有最小值為17600
此時,在甲廠生產(chǎn)800件,乙廠生產(chǎn)200件,總費用最少,為17600元
綜上所述,學(xué)校安排在甲廠生產(chǎn)800件,乙廠生產(chǎn)200件,可以使總費用最少,最少17600元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為12, D為AB邊上一動點,過點D作DE⊥BC于點E.過點E作EF⊥AC于點F.
(1)若AD=2,求AF的長;
(2)當AD取何值時,DE=EF?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(3,2),有下面四個結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤3.其中正確的是( 。
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,其中.
(1)求證:為任意非零實數(shù)時,拋物線與軸總有兩個不同的交點;
(2)求拋物線與軸的兩個交點的坐標(用含的代數(shù)式表示);
(3)將拋物線沿軸正方向平移一個單位長度得到拋物線,則無論取任何非零實數(shù),都經(jīng)過同一個定點,直接寫出這個定點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為,較短直角邊長為,若,大正方形的面積為13,則小正方形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接,其中有:①;②;③;④,四個結(jié)論,則結(jié)論一定正確的有( )個
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快車與慢車分別從甲、乙兩地同時相向出發(fā),勻速而行,快車到達乙地后停留,然后原路按原速返回,此時,快車比慢車晚到達甲地,快、慢兩車距各自出發(fā)地的路程與所用的時的關(guān)系如圖所示.
(1)甲、乙兩地之間的路程為____________.
(2)求的函數(shù)解析式,并寫出的取值范圍.
(3)當快、慢兩車相距時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.
(1)若∠BAC=50°,求∠EDA的度數(shù);
(2)求證:直線AD是線段CE的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的邊為直徑畫,交于點,半徑,連接,,,設(shè)交于點,若.
(1)求證:是的切線;
(2)若,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com