【題目】如圖,直線x=-4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=-4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.
【答案】(1)點(diǎn)A的坐標(biāo)為(-2,0)。
(2)此拋物線的函數(shù)關(guān)系式為或。
【解析】
(1)過點(diǎn)D作DF⊥x軸于點(diǎn)F,由拋物線的對稱性可知OF=AF,則2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根據(jù)相似三角形對應(yīng)邊成比例得出 ,即AE=2AF②,①與②聯(lián)立組成二元一次方程組,解出AE=2,AF=1,進(jìn)而得到點(diǎn)A的坐標(biāo)。
(2)先由拋物線過原點(diǎn)(0,0),設(shè)此拋物線的交點(diǎn)式為,再根據(jù)拋物線過原點(diǎn)(0,0)和A點(diǎn)(-2,0),求出對稱軸為直線x=-1,則由B點(diǎn)橫坐標(biāo)為-4得出C點(diǎn)橫坐標(biāo)為2,BC=6.再由OB>OC,可知當(dāng)△OBC是等腰三角形時(shí),可分兩種情況討論:①當(dāng)OB=BC時(shí),設(shè)B(-4,y1),列出方程,解方程求出y1的值,將B點(diǎn)坐標(biāo)代入,運(yùn)用待定系數(shù)法求出此拋物線的解析式;②當(dāng)OC=BC時(shí),設(shè)C(2,y2),列出方程,解方程求出y2的值,將C點(diǎn)坐標(biāo)代入,運(yùn)用待定系數(shù)法求出此拋物線的解析式。
解:(1)如圖,過點(diǎn)D作DF⊥x軸于點(diǎn)F,
由題意,可知OF=AF,則2AF+AE=4①。
∵DF∥BE,∴△ADF∽△ABE。
∴,即AE=2AF②。
①與②聯(lián)立,解得AE=2,AF=1。
∴點(diǎn)A的坐標(biāo)為(-2,0)。
(2)∵拋物線過原點(diǎn)(0,0)和點(diǎn)A(-2,0),
∴可設(shè)此拋物線的解析式為,且對稱軸為直線x=-1。
∵B、C兩點(diǎn)關(guān)于直線x=-1對稱,B點(diǎn)橫坐標(biāo)為-4,∴C點(diǎn)橫坐標(biāo)為2。
∴BC=2-(-4)=6。
∵拋物線開口向上,∴∠OAB>90°,OB>AB=OC。
∴當(dāng)△OBC是等腰三角形時(shí),分兩種情況討論:
①當(dāng)OB=BC時(shí),設(shè)B(-4,y1),則,解得(負(fù)值舍去)。
∴B(-4,)。
將B(-4,)代入,得,解得。
∴此拋物線的解析式為,即。
②當(dāng)OC=BC時(shí),設(shè)C(2,y2),則,解得(負(fù)值舍去)。
∴C(2,)。
將A C(2,)代入,得得,解得。
∴此拋物線的解析式為,即。
綜上所述,若△OBC是等腰三角形,此拋物線的函數(shù)關(guān)系式為或。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城區(qū)近幾年通過拆遷舊房,植草,栽樹,修建公園等措施,使城區(qū)綠地面積不斷增加。
(1)根據(jù)圖中所提供的信息,回答下列問題:2008年綠地面積為 公頃。
在2006、2007、2008年這三年中,綠地面積增加最多的是 年。
(2)為了滿足城市發(fā)展的需要,計(jì)劃到2010年使綠地總面積達(dá)到72.6公頃,試求這兩年(2008——2010)綠地面積的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤,如果這種商品每件的銷售價(jià)每提高0.5元其銷售量就減少10件,問應(yīng)將每件售價(jià)定為多少元時(shí),才能使每天利潤為640元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,D是AC的中點(diǎn),CE⊥BD于點(diǎn)E,交BA的延長線于點(diǎn)F.若BF=12,則△FBC的面積為( )
A. 40 B. 46 C. 48 D. 50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A(-1,5)、B(-1,0)、C(-4,3)
(1)直接寫出△ABC的面積為_________
(2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1
(3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三個(gè)家電廠家在廣告中都聲稱,他們的某種電子產(chǎn)品在正常情況下的使用壽命都是年,經(jīng)質(zhì)量檢測部門對這三家銷售的產(chǎn)品的使用壽命進(jìn)行跟蹤調(diào)查,統(tǒng)計(jì)結(jié)果如下:(單位:年)
甲廠:,,,,,,,,,
乙廠:,,,,,,,,,
丙廠:,,,,,,,,,
請回答下列問題:
分別求出以上三組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);
這三個(gè)廠家的銷售廣告分別利用了哪一種表示集中趨勢的特征數(shù);
如果你是顧客,宜選購哪家工廠的產(chǎn)品?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】紅星中學(xué)為了解七年級學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知、兩組發(fā)言人數(shù)的比為,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
求出樣本容量,并補(bǔ)全直方圖;
該年級共有學(xué)生人,請估計(jì)全年級在這天里發(fā)言次數(shù)不少于次的人數(shù);
已知組發(fā)言的學(xué)生中恰有位女生,組發(fā)言的學(xué)生中恰有位男生,現(xiàn)從組與組中分別抽一位學(xué)生寫報(bào)告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.
發(fā)言次數(shù) | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論正確的有_____.
①abc>0
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3
③2a+b=0
④當(dāng)x>0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,己知,,點(diǎn)在邊上沿到的方向以每秒的速度運(yùn)動(dòng)(不與點(diǎn),重合),點(diǎn)在上,且滿足,設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為秒,當(dāng)是等腰三角形時(shí),________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com