【題目】如圖,等邊△ABC中,DBC邊上一點,EAC邊上一點,∠ADE60°

1)求證:△ABD∽△DCE

2)若BD4,CE,求△ABC的邊長.

【答案】(1)證明見解析 (2)6

【解析】

1)由△ABC是等邊三角形得到∠B=∠C60°,ABBC,經(jīng)過進一步證明可以得出∠DAB=∠EDC,從而證明△ABD∽△DCE

(2)根據(jù)相似三角形的性質(zhì)列出方程求解即可

證明(1)∵△ABC是等邊三角形,

∴∠B=∠C60°,ABBC;

CDBCBDAB3;

∴∠BAD+∠ADB120°

∵∠ADE60°,

∴∠ADB+∠EDC120°,

∴∠DAB=∠EDC,

又∵∠B=∠C60°,

∴△ABD∽△DCE;

2)∵△ABD∽△DCE,

BD4,CE

,

解得AB6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,AC4,BC3,PAB邊上一動點,PDAC于點D,點EP的右側(cè),且PE1,連接CEP從點A出發(fā),沿AB方向運動,當E到達點B時,P停止運動,在整個運動過程中,陰影部分面積S1+S2的大小變化的情況是( 。

A.一直減小B.一直增大

C.先增大后減小D.先減小后增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示:

1)畫出ABC關(guān)于x軸對稱的A1B1C1;

2)以原點O為位似中心,在y軸左側(cè)將A1B1C1放大為原來的2倍,得到A2B2C2,請畫出A2B2C2

3)設(shè)P(x,y)ABC內(nèi)任意一點,A2B2C2內(nèi)的點P是點P經(jīng)過上述兩次變換后的對應點,請直接寫出P的坐標___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,點邊上的任一點,連接并將線段繞點順時針旋轉(zhuǎn)得到線段,在邊上取點使,連接.

1)求證:四邊形是平行四邊形;

2)線段交于點,連接,若,則存在怎樣的數(shù)量關(guān)系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,的平分線,過,作,垂足為,則_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc0;②4acb2;③2a+b0;④其頂點坐標為(,﹣2);⑤當x時,yx的增大而減;⑥a+b+c0正確的有(  )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(a﹣1)x2+3x﹣6的圖象與x軸的交點為A和B,若點B一定在坐標原點和(1,0)之間,且B點不與原點和(1,0)重合,那么a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD=∠BCD90°,ABCDBCBD,BMCDAD于點M.連接CMDB于點N

1)求證:ABD∽△BCD;

2)若CD6,AD8,求MC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為弓形AB的弦,AB2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內(nèi)心,當點P從點A向點B運動時,點I移動的路徑長為_____

查看答案和解析>>

同步練習冊答案