如圖,已知以點O為兩個同心圓的公共圓心,大圓的弦AB交小圓于C、D兩點.
(1)求證:AC=BD;
(2)若AB=8,CD=4,求圓環(huán)的面積.
(1)過點O作OE⊥AB于E,
∴AE=BE,CE=DE,
∴AE-CE=BE-DE,
∴AC=BD;

(2)連接OA,OC,
在Rt△AOE與Rt△OCE中:OE2=OA2-AE2,OE2=OC2-CE2,
∴OA2-AE2=OC2-CE2
∴OA2-OC2=AE2-CE2,
∵AB=8,CD=4,
∴AE=4,CE=2,
∴OA2-OC2=12,
∴圓環(huán)的面積為:πOA2-πOC2=π(OA2-OC2)=12π.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,弦CD⊥AB,E為垂足,若AE=9,BE=1,則CD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,CD是⊙O的直徑,AB是弦(不是直徑),AB⊥CD于點E,則下列結論正確的是( 。
A.AE>BEB.
AD
=
BC
C.∠D=
1
2
∠AEC
D.△ADE△CBE

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知⊙O的半徑OA=2,弦AB,AC的長分別2
3
,2
2
,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AD為圓O的直徑.甲、乙兩人想在圓上找B,C兩點,作一個正三角形ABC,其作法如下:
甲:1.作OD中垂線,交圓于B,C兩點,
2.連AB,AC,△ABC即為所求.
乙:1.以D為圓心,OD長為半徑畫弧,交圓于B,C兩點,
2.連AB,BC,CA,△ABC即為所求.
對于甲、乙兩人的作法,下列判斷何者正確(  )
A.甲、乙皆正確B.甲、乙皆錯誤
C.甲正確、乙錯誤D.甲錯誤、乙正確

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,是一個某一高速公路單心圓曲隧道的截面,若路面AB寬為12米,凈高CD為8米,則此隧道單心圓的半徑OA是______米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,是一個隧道的橫截面,若它的形狀是以O為圓心的圓的一部分,已知AB=12米,隧道最高處與地面距離(即CD)為8米,⊙O的半徑OA為(  )
A.6米B.7米C.
25
4
D.
37
7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知:AD是⊙O的直徑,AB、AC是弦,且AB=AC.
(1)求證:直徑AD平分∠BAC;
(2)若BC經(jīng)過半徑OA的中點E,F(xiàn)是
CD
的中點,G是
FB
中點,⊙O的半徑為1,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O的直徑CD垂直于弦AB,垂足為點P,若AP=6cm,PD=4cm,則⊙O的直徑為______cm.

查看答案和解析>>

同步練習冊答案