已知四邊形ABCD的對角線AC與BD相交于O,給出下列四個論斷:①OA=OC;②AB=CD;③∠BAD=∠DCB;④AD∥BC.從中選擇兩個作為條件,以“四邊形ABCD為平行四邊形”作為結論,得到的6個命題中,真命題有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
B
分析:本題是開放題,可以針對各種特殊的平行四邊形的判定方法,結合題中給出的條件,再證明結論.
解答:解:分別選擇①④或③④時,能推出四邊形ABCD為平行四邊形.
以③④為例證明.
證明:如圖,∵AD∥BC
∴∠ADB=∠CBD
在△ABD和△CDB中,
∠BAD=∠DCB,∠ADB=∠CBD,DB=BD
∴△ABD≌△CDB
∴AD=CB
又∵AD∥BC
∴四邊形ABCD為平行四邊形,
故選B.
點評:本題考查平行四邊形的判定.解答此類題的關鍵是要突破思維定勢的障礙,運用發(fā)散思維,多方思考,探究問題在不同條件下的不同結論,挖掘它的內在聯(lián)系,向“縱、橫、深、廣”拓展,從而尋找出添加的條件和所得的結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD的外接圓⊙O的半徑為2,對角線AC與BD的交點為E,AE=EC,AB=
2
AE,且BD=2
3
,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、已知四邊形ABCD的四邊分別有a,b,c,d.其中a,c是對邊且a2+b2+c2+d2=2ac+2bd,則四邊形是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC與△ADC關于直線AC對稱,連接BD,若已知四邊形ABCD的面積是125,AC=25,則BD的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的對角線互相垂直,若適當添加一個條件,就能判定該四邊形是菱形.那么這個條件可以是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD的四個頂點的坐標分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點的橫坐標都增加2,縱坐標都增加3,其面積為( 。

查看答案和解析>>

同步練習冊答案