如圖,在平面直角坐標(biāo)中,邊長(zhǎng)為2的正方形的兩頂點(diǎn)、分別在軸、軸的正半軸上,點(diǎn)在原點(diǎn).現(xiàn)將正方形點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為θ,當(dāng)點(diǎn)第一次落在直線上時(shí)停止旋轉(zhuǎn).旋轉(zhuǎn)過(guò)程中,邊交直線于點(diǎn),邊交軸于點(diǎn).

 

 

 

 

 

 

 

 

(1)當(dāng)點(diǎn)第一次落在直線上時(shí),求A、B兩點(diǎn)坐標(biāo)(直接寫(xiě)出結(jié)果);

(2)設(shè)的周長(zhǎng)為,在旋轉(zhuǎn)正方形的過(guò)程中,值是否有變化?請(qǐng)證明你的結(jié)論.

 

【答案】

(1) A點(diǎn)坐標(biāo)為(,),B點(diǎn)坐標(biāo)為(2,0)    4分

(2)值無(wú)變化.      證明 見(jiàn)解析         5分

【解析】(1)根據(jù)勾股定理求得兩點(diǎn)的坐標(biāo);

(2)延長(zhǎng)BA交y軸于E點(diǎn),可以證明:△OAE≌△OCN,△OME≌△OMN證得:OE=ON,AE=CN,MN=ME=AM+AE=AM+CN.

從而求得:P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.即可求解.

證明:延長(zhǎng)軸于點(diǎn).在

 

 ∴.            7分

    ∴.

  ∴      8分

.   10分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案