12、已知AB∥CD,AD∥BC,AC與BD交于點(diǎn)O,則圖中全等的三角形有( 。
分析:先由四邊形ABCD的兩組對(duì)邊平行,得到四邊形為平行四邊形,根據(jù)平行四邊形的性質(zhì)得到兩組對(duì)邊相等,兩組對(duì)角相等,且對(duì)角線互相平分,然后利用“SSS”的全等方法得到△AOD和△COB全等及△AOB和△COD全等,利用“SAS”的全等方法得到△ABD和△CDB全等及△ABC和△CDA全等,從而得到圖中全等三角形的對(duì)數(shù)為4.
解答:解:圖中全等的三角形有4對(duì),
分別是△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA,
證明:∵AB∥CD,AD∥BC,
∴四邊形ABCD為平行四邊形,
∴OA=OC,OB=OD,AD=BC,AB=DC,∠BAD=∠DCB,∠ABC=∠CDA,
在△AOD和△COB中,
AD=BC,OA=OC,OB=OD,
∴△AOD≌△COB;
在△AOB和△COD中,
AB=DC,OA=OC,OB=OD,
∴△AOB≌△COD;
在△ABD和△CDB中,
AD=BC,∠BAD=∠DCB,AB=CD,
∴△ABD≌△CDB;
在△ABC和△CDA中,
AB=CD,∠ABC=∠CDA,BC=AD,
∴△ABC≌△CDA.
故選D
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì),以及全等三角形的判定.本題屬于結(jié)論開(kāi)放型問(wèn)題,此類(lèi)問(wèn)題的特點(diǎn)是已知相關(guān)條件,需要根據(jù)條件尋求相應(yīng)的結(jié)論,并且符合條件的結(jié)論不唯一.判斷出四邊形ABCD為平行四邊形是解本題的突破點(diǎn),其中判定三角形全等的方法有:SSS,SAS,ASA,AAS及HL,根據(jù)實(shí)際情況選擇合適的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知AB∥CD,AD與BC相交于點(diǎn)O,AO:DO=1:2,那么下列式子錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,已知AB∥CD,AD、BC相交于O點(diǎn),∠BAD=35°,則∠D=35°是根據(jù)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

47、如圖,已知AB∥CD,AD∥BC,回答下來(lái)問(wèn)題.
(1)判斷∠1與∠2是否相等,并說(shuō)明理由.
(2)∠1與∠BAD是一對(duì)什么的角?它們是否相等?為什么?
(3)∠2與∠BAD是一對(duì)什么的角?它們是否相等?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•東營(yíng))如圖,已知AB∥CD,AD和BC相交于點(diǎn)O,∠A=50°,∠AOB=105°,則∠C等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB=CD,AD=CB,你能得到AD∥BC,AB∥CD的結(jié)論?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案