【題目】甲數(shù)是乙數(shù)的2倍,甲比乙多(

A.50%B.100%C.200%D.150%

【答案】B

【解析】

根據(jù)甲數(shù)是乙數(shù)的2,把乙數(shù)看做1份,甲數(shù)是2份,甲數(shù)比乙數(shù)多(2-1)份,由此即可解答.

2-1÷1
=1÷1
=100%
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:
(1)橋拱半徑
(2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場第1次用39萬元購進A、B兩種商品,銷售完后獲得利潤6萬元,它們的進價和售價如下表:(總利潤=單件利潤×銷售量)

商品

價格

A

B

進價(元/件)

1200

1000

售價(元/件)

1350

1200

(1)該商場第1次購進A、B兩種商品各多少件?

(2)商場第2次以原價購進A、B兩種商品,購進A商品的件數(shù)不變,而購進B商品的件數(shù)是第1次的2倍,A商品按原價銷售,而B商品打折銷售,若兩種商品銷售完畢,要使得第2次經(jīng)營活動獲得利潤等于54000元,則B種商品是打幾折銷售的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫男畔,或可以求出一些不規(guī)則圖形的面積.

(1)如圖1所示,將一張長方形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為m的大正方形,兩塊是邊長都為n的小正方形,五塊是長為m,寬為n的全等小長方形,且m>n.觀察圖形,可以發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為 .

(2)若圖1中每塊小長方形的面積為12cm2,四個正方形的面積和為50 cm2,試求圖中所有裁剪線(虛線部分)長之和.

(3)將圖2中邊長為ab的正方形拼在一起,B,C,G三點在同一條直線上,連接BDBF,若這兩個正方形的邊長滿足a+b=10,ab=16,請求出陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的邊BC=2 cm,且△ABC內(nèi)接于半徑為2cm的⊙O,則∠A=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有A、BC三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在( )

A. AC、BC兩邊高線的交點處

B. ACBC兩邊中線的交點處

C. AC、BC兩邊垂直平分線的交點處

D. ∠A、∠B兩內(nèi)角平分線的交點處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“轉化”是數(shù)學中的一種重要思想,即把陌生的問題轉化成熟悉的問題,把復雜的問題轉化成簡單的問題,把抽象的問題轉化為具體的問題.

已知:如圖1,線段AB、CD相交于點O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”,試解答下列問題:

問題一在圖1中,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關系   ;

問題二:在圖2中,若∠D=40°,∠B=36°,∠DAB和BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于M、N,試求P的度數(shù);

問題三:在圖3中,已知AP、CP分別平分∠BAM、∠BCD,請問P與∠B、∠D之間存在著怎樣的數(shù)量關系?并說明理由.

問題四:在圖4中,已知AP的反向延長線平分∠EAB,CP平分∠DCF,請直接寫出∠P與∠B、∠D之間的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(4,3),動圓D經(jīng)過A,O,分別與兩坐標軸的正半軸交于點E,F(xiàn).當EF⊥OA時,此時EF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是線段AB的中點,CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

同步練習冊答案