【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已成為更多人的自主學習選擇,某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論,為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調查,并根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調查的學生總人數(shù),并通過計算補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);

3)該校共有學生1800人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

【答案】190人,見解析;(248°;(3480

【解析】

1)根據(jù)在線答題的人數(shù)和所占的百分比可以求得本次調查的學生總人數(shù);根據(jù)學生總人數(shù)和條形統(tǒng)計圖中的數(shù)據(jù)可以計算出在線聽課的人數(shù),從而可以將條形統(tǒng)計圖補充完整;
2)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);
3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計算出該校對在線閱讀最感興趣的學生有多少人.

解:(1(人),

∴本次調查的學生總人數(shù)為 90 人,

在線聽課人數(shù)為:(人),

補全條形統(tǒng)計圖如圖所示;

2,

∴扇形統(tǒng)計圖中,在線討論對應的扇形圓心角的度數(shù)為 48°;

3(人),

∴估計該校對在線閱讀最感興趣的學生人數(shù)為480.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】學校提倡練字,小冬和小紅一起去文具店買鋼筆和字帖,小冬在文具店買1支鋼筆和3本字帖共花了38元,小紅買了2支鋼筆和4本字帖共花了64元.

1)每支鋼筆與每本字帖分別多少元?

2)帥帥在六一節(jié)當天去買,正巧碰到文具店搞促銷,促銷方案有兩種形式:

①所購商品均打九折

②買一支鋼筆贈送一本字帖

帥帥要買5支鋼筆和15本字帖,他有三種選擇方案:

)一次買5支鋼筆和15本字帖,然后按九折付費;

)一次買5支鋼筆和10本字帖,文具店再贈送5本字帖;

)分兩次購買,第一次買5支鋼筆,文具店會贈送5本字帖,第二次再去買10本字帖,可以按九折付費;問帥帥最少要付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(33)

(1)先作出△ABC,再將△ABC向下平移5個單位長度后得到△A1B1C1,請畫出△A1B1C1

(2)△ABC繞原點O逆時針旋轉90°后得得到△A2B2C2,請畫出△A2B2C2

(3)求出以O,A1,B為頂點的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,DBC的中點,DE⊥BC,CE//AD,若AC2,CE4,則四邊形ACEB的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點

1求證:AC2=ABAD;

2求證:CEAD;

3若AD=4,AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,點PQ分別從A、B兩點出發(fā),按逆時針方向沿矩形的邊運動,點P的速度是每秒2個單位長度,點Q的速度是每秒1個單位長度,運動的時間為t秒,當其中某一點到達點A時,運動停止,運動過程中,點P關于直線AQ的對稱點記為點M

(1)點P點在線段AB上運動,點Q在線段BC上運動時,請用含t的式子表示出APQ的面積S

(2)當點P在線段BC上運動,且ABP∽△PCQ時,求t的值;

(3)若點Q在線段CD上,且以A、P、QM為頂點的四邊形是菱形,求t的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知a,b,c均為實數(shù),且 +|b+1|+c+22=0,求關于x的方程ax2+bx+c=0的根;

(2)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(﹣1,0),B(0,﹣3),C(4,5)三點,求該二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1、圖2分別是的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,線段的端點在小正方形的頂點上,請在圖1、圖2中各畫一個圖形,分別滿足以下要求:

1)在圖1中畫一個以線段為一邊且周長為的平行四邊形,所畫圖形的各頂點必須在小正方形的頂點上.

2)在圖2中畫一個以線段為一邊的等腰鈍角三角形,所畫等腰三角形的各頂點必須在小正方形的頂點上,并直接寫出該等腰三角形的周長是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

在解方程組或求代數(shù)式的值時,可以用整體代入或整體求值的方法,化難為易.

1)解方程組

2)已知,求x+y+z的值

解:(1)把代入得:x+2×13.解得:x1

x1代入得:y0

所以方程組的解為,

2×2得:8x+6y+4z20

得:x+y+z5

(類比遷移)

1)若,則x+2y+3z   

2)解方程組

(實際應用)

打折前,買39A商品,21B商品用了1080元.打折后,買52A商品,28B商品用了1152元,比不打折少花了多少錢?

查看答案和解析>>

同步練習冊答案