建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).
精英家教網(wǎng)
分析:利用30°的正切值可求得OB長,利用60°的正切值可求得OA長.OB-OA即為商店與海源閣賓館之間的距離.
解答:解:∵兩條水平線是平行的,
∴∠B=30°,∠PAO=60°.
∵PO=30,∠POA=90°,
∴OB=
PO
tan30°
=30
3
,
OA=
PO
tan60°
=10
3

∴AB=OB-OA=20
3
點評:解決本題的關鍵是借助俯角構造直角三角形,運用三角函數(shù)定義表示與所求線段相關的線段的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市密云縣九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《解直角三角形》中考題集(31):25.3 解直角三角形及其應用(解析版) 題型:解答題

建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2010•聊城)建于明洪武七年(1374年),高度33米的光岳樓是目前我國現(xiàn)存的最高大、最古老的樓閣之一(如圖①).喜愛數(shù)學實踐活動的小偉,在30米高的光岳樓頂樓P處,利用自制測角儀測得正南方向商店A點的俯角為60°,又測得其正前方的海源閣賓館B點的俯角為30°(如圖②).求商店與海源閣賓館之間的距離(結果保留根號).

查看答案和解析>>

同步練習冊答案