【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(0,1).
(1)畫出△ABC向右平移3個單位長度所得的△A1B1C1;寫出C1點的坐標;
(2)畫出將△ABC繞點B按逆時針方向旋轉(zhuǎn)90°所得的△A2B2C2;寫出C2點的坐標;
(3)在(2)的條件下求點A所經(jīng)過路徑的長度.
科目:初中數(shù)學 來源: 題型:
【題目】作圖與設計:
在圖1和圖2中,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個三角形,使三角形三邊長分別為,,4;
(2)在圖2中以格點為頂點畫一個面積為10的正方形;
(3)在圖3的正方形網(wǎng)格中建立平面直角坐標系,若各頂點的坐標分別為:,,,請你作,使和關于軸對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).
(1)寫出y與x之間的函數(shù)關系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,,AC=BC,D為BC的中點,過C作CE⊥AD于點E,延長CE交AB于點F,,連接FD;若AC=4,則CF+FD的值是( )
A.B.5C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方體的長AC=3cm,寬BC=2cm,高AA′=5cm.一只螞蟻如果沿長方體的表面從A點爬到B′點,那么沿哪條路最近?最短路程是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線交軸于點,交軸于點,拋物線經(jīng)過點、,交軸于另一點,頂點為.
求拋物線的函數(shù)表達式;
求點、兩點的坐標;
求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:三角形ABC中,∠A=90°,AB=AC,D為BC的中點.
(1)如圖,E、F分別是AB、AC上的點,且BE=AF,求證:△DEF為等腰直角三角形.
(2)若E、F分別為AB,CA延長線上的點,仍有BE=AF,其他條件不變,那么,△DEF是否仍為等腰直角三角形?畫出圖形,寫出結論不證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c(a≠0)的頂點是(1,4),且圖象過點A(3,0),與y軸交于點B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)求直線AB的解析式;
(3)在直線AB上方的拋物線上是否存在一點C,使得S△ABC=.如果存在,請求出C點的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com