【題目】如圖,將正方形ABCO繞點A順時針旋轉(zhuǎn)一定角度,得到正方形ADEF,ED交線段OC于點G,ED的延長線交線段BC于點P,連AP、AG.
(1)求證:△AOG≌△ADG;
(2)求∠PAG的度數(shù);并判斷線段OG、PG、BP之間的數(shù)量關系,說明理由;
(3)若正方形ABCO的邊長為,∠1=∠2,求AP的長.
【答案】(1)證明見解析(2)∠PAG =45°,PG=OG+BP(3)AH=2,AP=
【解析】試題分析:(1)由AO=AD,AG=AG,利用“HL”可證△AOG≌△ADG;(2)利用(1)的方法,同理可證△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度數(shù);根據(jù)兩對全等三角形的性質(zhì),可得出線段OG、PG、BP之間的數(shù)量關系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,當∠1=∠2時,可證∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,確定P、G兩點坐標,得出直線PE的解析式,進而可求出AP的長.
試題解析:
(1)由題意得,AO=AD,∠AOG=∠ADG=90°,
∴在Rt△AOG和Rt△ADG中,AO=AD,AG=AG,∴△AOG≌△ADG.
(2)∠PAG =45°,PG=OG+BP.
理由如下:
由(1)同理可證△ADP≌△ABP,則∠DAP=∠BAP,DP=BP,
∵由(1)△AOG≌△ADG,
∴∠1=∠DAG,DG=OG,
又∵∠1+∠DAG+∠DAP+∠BAP=90°,
∴2∠DAG+2∠DAP=90°,
即∠DAG+∠DAP=45°,
∴∠PAG=∠DAG+∠DAP=45°,
PG=DG+DP=OG+BP.
(3)∵△AOG≌△ADG,
∴∠AGO=∠AGD,
又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,
∴∠AGO=∠AGD=∠PGC,
又∵∠AGO+∠AGD+∠PGC=180°,
∴∠AGO=∠AGD=∠PGC=60°,
∴∠1=∠2=30°,
在Rt△AOG中,AO=,OG=AOtan30°=+1,AG=2+2,
在Rt△AOG中,CG=2,PG=4,
作PH⊥AG于H,在Rt△PHG中,HG=2,PH=2,在Rt△APH中,AH=2,AP=.
科目:初中數(shù)學 來源: 題型:
【題目】某商店第一次用600元購進2B鉛筆若干支,第二次又用600元購進該款鉛筆,但這次每支的進價是第一次進價的倍,購進數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進價是多少元?
(2)若要求這兩次購進的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年,全年國內(nèi)生產(chǎn)總值達到900300億元,將這個數(shù)據(jù)用科學記數(shù)法表示為_____元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,點D是弧BC的中點,連結(jié)CD、AD、OD,給出以下四個結(jié)論:①∠DOB=∠ADC;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正確結(jié)論的序號是( )
A. ①③ B. ②④ C. ①②③ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y=(x﹣1)2+2的圖象,下列說法正確的是( )
A.開口向下
B.頂點坐標是(1,2)
C.對稱軸是x=﹣1
D.有最大值是2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD⊥AB于D,點F是BC上任意一點,F(xiàn)E⊥AB于E,且∠1=∠2,∠3=80°.
(1)試證明∠2=∠DCB
(2)試證明DG∥BC;
(3)求∠BCA的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com