在△ABC中:
(1)若∠A=40°,∠B=∠C,則∠C=
70°
70°

(2)若∠A=40°,∠B-∠C=20°,則∠C=
60°
60°

(3)若∠A+∠B=100°,∠C=2∠A,則∠C=
80°
80°
,∠A=
50°
50°

(4)若∠A:∠B:∠C=1:3:5,則∠C=
100°
100°
分析:(1)根據(jù)三角形內(nèi)角和為180°可得∠C=(180°-40°)÷2=70°‘
(2)根據(jù)∠A=40°可得∠B+∠C=180°-40°=140°,再根據(jù)∠B-∠C=20°可以算出∠C的度數(shù);
(3)由三角形內(nèi)角和可得∠C=180°-100°=80°,再由∠C=2∠A,可得∠A的度數(shù);
(4)設(shè)∠A=x°,∠B=3x°,∠C=5x°,根據(jù)三角形內(nèi)角和定理可得x+3x+5x=180,再解出x的值,進(jìn)而算出∠C即可.
解答:解:(1)∠C=(180°-40°)÷2=70°;

(2)∵∠A=40°,
∴∠B+∠C=180°-40°=140°,
∵∠B-∠C=20°,
∴∠C+20°+∠C=140°,
解得:∠C=60°;

(3)∵∠A+∠B=100°,
∴∠C=180°-100°=80°,
∵∠C=2∠A,
∴∠A=50°;

(4)∵∠A:∠B:∠C=1:3:5,
∴設(shè)∠A=x°,∠B=3x°,∠C=5x°,
x+3x+5x=180,
解得x=20,
∠C=5×20°=100°,
點(diǎn)評(píng):此題主要考查了三角形內(nèi)角和定理,關(guān)鍵是掌握三角形內(nèi)角和為180°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點(diǎn)O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點(diǎn)F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點(diǎn)D,交AC于點(diǎn)E、已知△ABC中與△ABD的周長(zhǎng)分別為18cm和12cm,則線段AE的長(zhǎng)等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是(  )
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長(zhǎng)為( 。
A、
2
B、
3
C、2
D、以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案