如圖,正方形ABCD被直線OE分成面積相等的兩部分,已知線段OD、AD的長(zhǎng)都是正整數(shù),
CE
BE
=20
.則滿足上述條件的正方形ABCD面積的最小值是( 。
A.324B.331C.354D.361
精英家教網(wǎng)
OE一定過正方形ABCD的中心O′.不妨設(shè)BE=a,OD=m.
∴CE=20a,正方形邊長(zhǎng)為21a;
∴O′(m+10.5a,10.5a),E(m+21a,20a),
設(shè)OE解析式為y=kx,
∴k(m+10.5a)=10.5a,k(m+21a)=20a,
m+10.5a
m+21a
=
10.5a
20a
,
化簡(jiǎn)得:m=
21
19
a,
∵線段OD、AD的長(zhǎng)都是正整數(shù),
∴m,21a都是正整數(shù),
∴21a的最小值為19,此時(shí)m=1.
此時(shí)正方形ABCD的最小面積為(21a)2=192=361.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案