【題目】自學下面材料后,解答問題.

分母中含有未知數(shù)的不等式叫分式不等式.如:;等.那么如何求出它們的解集呢?根據(jù)我們學過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:

(1)若>0,>0,則>0;若<0,<0,則>0;

(2)若>0,<0,則<0;若<0,>0,則<0.

反之:(1)若>0,則

(2)若<0,則____________________.

(3)根據(jù)上述規(guī)律,求不等式的解集.

(4)試求不等式的解集.

【答案】

【解析】

(2)根據(jù)兩數(shù)相除,異號得負解答;

(3)先根據(jù)同號得正把不等式轉(zhuǎn)化成不等式組,然后根據(jù)一元一次不等式組的解法求解即可;

(4) 先根據(jù)異號得負把不等式轉(zhuǎn)化成不等式組,然后根據(jù)一元一次不等式組的解法求解即可.

(2)根據(jù)閱讀,可以知道,<0,所以,異號,

所以有兩種情況.

(3)

或②

解一元一次不等式組,

得到①,;

由②得(無解)

故不等式的解集為

(4)對不等式進行整理得到,,即

整理可得,

由①解得,

由②解得,

綜上所述,不等式的解集為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的5×6的網(wǎng)格中,ABC的三個頂點均在格點上,請按要求解決下列問題:

(1)通過計算判斷ABC的形狀;

(2)在圖中確定一個格點D,連接AD、CD,使四邊形ABCD為平行四邊形,并求出 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.

(1)求證:DF是⊙O的切線;
(2)若CF=1,DF= ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校隨機抽取部分學生,就“學習習慣”進行調(diào)查,將“對自己做錯的題目進行整理、分析、改正”(選項為:很少、有時、常常、總是)的調(diào)查數(shù)據(jù)進行了整理,繪制成部分統(tǒng)計圖如下:

請根據(jù)圖中信息,解答下列問題
(1)該調(diào)查的樣本容量為 , a=%,b=%,“常!睂(yīng)扇形的圓心角為°
(2)請你補全條形統(tǒng)計圖;
(3)若該校共有3200名學生,請你估計其中“總是”對錯題進行整理、分析、改正的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在△ABC中,∠ABC=90,點O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D.E.F是垂足,且AB=17,BC=15,則OF、OE、OD的長度分別是( )

A. 2,2,2 B. 3,3,3 C. 4,4,4 D. 5,5,5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是(

A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)切圓的三個切點分別為D、E、F,∠A=75°,∠B=45°,則圓心角∠EOF=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上).

1)在圖中作出ABC關(guān)于直線l對稱的A1B1C1 (要求AA1BB1,CC1相對應(yīng));

2)求ABC的面積;

3)在直線l上找一點P,使得PAC的周長最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+3x+m的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點

(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由
(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.

查看答案和解析>>

同步練習冊答案