9.如圖,△ABC與△DCB中,AC與BD交于點(diǎn)E,且∠A=∠D,AB=DC.
(1)求證:△ABE≌△DCE;
(2)當(dāng)∠AEB=50°,求∠EBC的度數(shù).

分析 (1)根據(jù)AAS即可推出△ABE和△DCE全等;
(2)根據(jù)三角形全等得出EB=EC,推出∠EBC=∠ECB,根據(jù)三角形的外角性質(zhì)得出∠AEB=2∠EBC,代入求出即可.

解答 (1)證明:在△ABE和△DCE中,
$\left\{\begin{array}{l}{∠A=∠D}\\{∠AEB=∠DEC}\\{AB=DC}\end{array}\right.$,
∴△ABE≌△DCE(AAS);

(2)解:∵△ABE≌△DCE,
∴BE=EC,
∴∠EBC=∠ECB,
∵∠EBC+∠ECB=∠AEB=50°,
∴∠EBC=25°.

點(diǎn)評 本題考查了三角形外角性質(zhì)和全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖1所示的是一種置于桌面上的簡易臺(tái)燈,將其結(jié)構(gòu)簡化成圖2,燈桿AB與CD交于點(diǎn)O(點(diǎn)O固定),燈罩連桿CE始終保持與AB平行,燈罩下方FG處于水平位置,測得OC=20cm,∠COB=70°,∠F=40°,EF=EG,點(diǎn)G到OB的距離為12cm.
(1)求∠CEG的度數(shù).
(2)求燈罩的寬度(FG的長;結(jié)果精確到0.1cm,可用科學(xué)計(jì)算器).
(參考數(shù)據(jù):sin40°≈0.643,cos40°≈0.766,sin70°≈0.940,cos70°≈0.342)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.分解因式1-4x+4x2為(2x-1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.閱讀下列解答過程:如圖甲,AB∥CD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.解:過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)梯子底部B到墻底端的距離為0.7米,考慮爬梯子的穩(wěn)定性,現(xiàn)要將梯子頂部A沿墻下移0.4米到A1處,問梯子底部B將外移多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中,錯(cuò)誤的個(gè)數(shù)是( 。
(1)三點(diǎn)確定一個(gè)圓;
(2)平分弦的直徑垂直于弦;
(3)相等的圓心角所對的弧相等;
(4)正五邊形是軸對稱圖形.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,菱形ABCD的對角線相交于點(diǎn)O,過點(diǎn)D作DE∥AC,且DE=$\frac{1}{2}$AC,連接CE、OE,連接AE,交OD于點(diǎn)F.若AB=2,∠ABC=60°,則AE的長為( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{7}$D.$2\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

18.計(jì)算:3÷$\sqrt{6}$的結(jié)果是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知實(shí)數(shù)a滿足|a-1|+$\sqrt{a-2}$=a,求a的值.

查看答案和解析>>

同步練習(xí)冊答案