【問題提出】
規(guī)定:四條邊對應(yīng)相等,四個角對應(yīng)相等的兩個四邊形全等.
我們借助學習“三角形全等的判定”獲得的經(jīng)驗與方法對“全等四邊形的判定”進行探究.
【初步思考】
在兩個四邊形中,我們把“一條邊對應(yīng)相等”或“一個角對應(yīng)相等”稱為一個條件,滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們?nèi)菀字纼蓚四邊形全等至少需要5個條件.
【深入探究】
小莉所在學習小組進行了研究,她們認為5個條件可分為以下四種類型:
Ⅰ一條邊和四個角對應(yīng)相等;
Ⅱ二條邊和三個角對應(yīng)相等;
Ⅲ三條邊和二個角對應(yīng)相等;
Ⅳ四條邊和一個角對應(yīng)相等.
(1)小明認為“Ⅰ一條邊和四個角對應(yīng)相等”的兩個四邊形不一定全等,請你舉例說明.
(2)小紅認為“Ⅳ四條邊和一個角對應(yīng)相等”的兩個四邊形全等,請你結(jié)合下圖進行證明.
已知:如圖,
.
求證:
.
證明:
(3)小剛認為還可以對“Ⅱ二條邊和三個角對應(yīng)相等”進一步分類,他以四邊形
和四邊形
為例,分為以下四類:
①
,
,
,
,
;
②
,
,
,
,
;
③
,
,
,
,
;
④
,
,
,
,
;
其中能判定四邊形
和四邊形
全等的是
(填序號),概括可得“全等四邊形的判定方法”,這個判定方法是
.
(4)小亮經(jīng)過思考認為也可以對“Ⅲ三條邊和二個角對應(yīng)相等”進一步分類,請你仿照小剛的方法先進行分類,再概括得出一個全等四邊形的判定方法.