【題目】如圖,AD∥BC,BD為∠ABC的角平分線,DE、DF分別是∠ADB和∠ADC的角平分線,且∠BDF=α,則∠A與∠C的等量關(guān)系是________________(等式中含有α)
【答案】∠A=∠C+2α
【解析】
由角平分線定義得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代換得∠A=∠C+2α即可得到答案.
解:如圖所示:
∵BD為∠ABC的角平分線,
∴∠ABC=2∠CBD,
又∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A+2∠CBD=180°,
又∵DF是∠ADC的角平分線,
∴∠ADC=2∠ADF,
又∵∠ADF=∠ADB+α
∴∠ADC=2∠ADB+2α,
又∵∠ADC+∠C=180°,
∴2∠ADB+2α+∠C=180°,
∴∠A+2∠CBD=2∠ADB+2α+∠C
又∵∠CBD=∠ADB,
∴∠A=∠C+2α,
故答案為:∠A=∠C+2α.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=70時,y=50;x=80時,y=40.
(1)求一次函數(shù)y=kx+b的表達式,并確定自變量x的取值范圍.
(2)若該商場獲得利潤為w元,銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點A(a,0),B(0,b),且a,b滿足a2-2ab+b2+(b-4)2=0,點C為線段AB上一點,連接OC.
(1)直接寫出a=____,b=_____;
(2)如圖1,P為OC上一點,連接PA,PB.若PA=B0,∠BPC=30°.求點P的縱坐標;
(3)如圖2,在(2)的條件下,點M是AB上一動點,以OM為邊在OM的右側(cè)作等邊△OMN,連接CN.若OC=t,求ON+CN的最小值(結(jié)果用含t的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時,每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,△ABC的三個頂點都在格點上(每個小方格的頂點叫格點).
(1)畫出△ABC繞點O順時針旋轉(zhuǎn)90°后的△A1B1C1;
(2)求△OAA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機小李某天上午營運時是在東西走向的大街上進行的,如果規(guī)定向東為正,向西為負,他這天上午所接六位乘客的行車里程(單位:)如下:
,,,,,,
問:(1)將最后一位乘客送到目的地時,小李在什么位置?
(2)若汽車耗油量為(升/千米),這天上午小李接送乘客,出租車共耗油多少升?
(3)若出租車起步價為8元,起步里程為(包括),超過部分每千米1.2元,問小李這天上午共得車費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在 Rt△ABC中,∠ABC=90°, BD平分∠ ABC,∠CAD=45, AC=4,點E是線段BD的中點,則CE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是矩形ABCD的對角線,AC的垂直平分線EF分別交BC、AD于點E和F,EF交AC于點O.
(1)求證:四邊形AECF是菱形;(2)若AB=6,AD=8,求四邊形AECF的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com