(11分)將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90º,∠A=∠D=30º,點E落在AB上,DE所在直線交AC所在直線于點F.
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉角,且0º<<60º,其他條件不變,請在圖②中畫出變換后的圖形,并直接寫出(1)中的結論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉角,且60º<<180º,其他條件不變,如圖③.你認為(1)中的結論還成立嗎?若成立,寫出證明過程;若不成立,請寫出此時AF、EF與DE之間的關系,并說明理由.
(1)通過三角形全等來分析CF=EF,進而代換求角(2)圖二(3)不成立,正確的結論是AF-EF=DE
【解析】
試題分析:證明:(1)連接BF(如圖①)
∵△ABC≌△DBE,∴BC=BE,AC=DE。
∵∠ACB=∠DEB=900
∴∠BCF=∠BEF=900 ,∵BF=BF,
∵Rt△BFC≌Rt△BFE
∴CF=EF!逜F+CF=AC,∴AF+EF=DE
(2)畫出正確的圖形如圖②。(1)中的結論AF+EF=DE仍然成立
(3)不成立。此時AF、EF與DE之間的關系為AF-EF=DE
理由:連接BF(如圖③),
∵△ABC≌△DBE,
∴BC=BE,AC=DE
∵∠ACB=∠DEB=900 ,
∴∠BCF=∠BEF=900 ,又∵BF=BF,
∵Rt△BFC≌Rt△BFE
∴CF=EF!逜F-CF=AC,∴AF-EF=DE
∴(1)中的結論不成立。正確的結論是AF-EF=DE
圖二
考點:三角形全等
點評:三角形全等的基本求法和判定是歷來考察的重點,考生要熟練把握
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.
小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年廣東省汕頭市植英中學八年級第一學期期末考試試數(shù)學卷 題型:解答題
如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.
小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年廣東省汕頭市八年級第一學期期末考試試數(shù)學卷 題型:解答題
如圖1,小明將一張矩形紙片沿對角線剪開,得到兩張全等直角三角形紙片(如圖2),量得他們的斜邊長為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖3的形狀,使點B、F、D在同一條直線上,F(xiàn)為公共直角頂點.
小明在對這兩張三角形紙片進行如下操作時遇到了兩個問題,請你幫助解決。(1)將圖3中的△ABF繞點F順時針方向旋轉30°到圖4的位置,A1F交DE于點G,請你求出線段EG的長度;(2)將圖3中的△ABF沿直線AF翻折到圖5的位置,AB1交DE于點H,請證明:AH=DH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com