已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).

(1)求b+c的值;

(2)若b=3,求這條拋物線的頂點坐標(biāo);

(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

答案:
解析:

  解:(1)依題意得:, 2分

  . 3分

  (2)當(dāng)時,, 4分

  

  拋物線的頂點坐標(biāo)是. 6分

  (3)當(dāng)時,拋物線對稱軸,

  對稱軸在點的左側(cè).

  因為拋物線是軸對稱圖形,P(-1,-2b)且

   9分

  

  . 10分

  又. 11分

  拋物線所對應(yīng)的二次函數(shù)關(guān)系式. 12分

  解法2:(3)當(dāng)時,

  對稱軸在點的左側(cè).因為拋物線是軸對稱圖形,

  ,且 9分

  . 10分

  又,解得: 11分

  這條拋物線對應(yīng)的二次函數(shù)關(guān)系式是. 12分

  解法3:(3),

   7分

  軸, 8分

  即:

  解得:,即 10分

  由,

   11分

  這條拋物線對應(yīng)的二次函數(shù)關(guān)系式 12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044

已知:拋物線y=x2-mx+與拋物線y=x2+mx-m2在平面直角坐標(biāo)系xOy中的位置如圖所示,其中一條與x軸交于A、B兩點.

(1)試判斷哪條拋物線經(jīng)過A、B兩點,并說明理由;

(2)若A、B兩點到原點的距離AO、BO滿足,求經(jīng)過A、B兩點的這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考備考專家數(shù)學(xué)(第二版) 題型:044

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點,C是拋物線的頂點.

(1)用配方法求頂點C的坐標(biāo)(用含m的代數(shù)式表示);

(2)“若AB的長為2,求拋物線的解析式.”解法的部分步驟如下,補全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法.

  解:由(1)知,對稱軸與x軸交于點D(  ,0).

  ∵拋物線的對稱性及AB=2

  ∴AD=BD=|xA-xD|=

  ∵點A(xA,0)在拋物線y=(x-h(huán))2+k上,

  ∴0=(xA-h(huán))2+k.  ①

  ∵h=xC=xD,將|xA-xD|=代入上式,得到關(guān)于m的方程

  0=()2+(  ) 、

(3)將(2)中的條件“AB的長為2”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠優(yōu)化訓(xùn)練九年級數(shù)學(xué)上 北京課改版 題型:044

已知:拋物線y=x2-(3m-1)x+m2-m.

(1)求證:此拋物線與x軸必有兩個交點;

(2)若此拋物線與直線y=x-3m+3的一個交點在y軸上,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下 (配北師大課標(biāo)) 配北師大課標(biāo) 題型:047

已知:拋物線y=x2+bx+c與x軸交于P,Q兩點,與y軸交于點E,且OE=OP=PQ.(1)畫出拋物線的示意圖,并求出拋物線的解析式;(2)問線段EQ上是否存在一點M,使△EMP∽△EPQ?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京市延慶縣2008年初中升學(xué)模擬試卷及答案、數(shù)學(xué) 題型:044

已知:拋物線y=x2+mx+n與x軸交A、B兩點(A點在B點左側(cè)),B(3,0),

且經(jīng)過C(2,-3),與y軸交于點D,

(1)求此拋物線的解析式及頂點F的坐標(biāo);

(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物于E點,求線段PE長度的最大值;

(3)在(1)的條件下,在x軸上是否存在兩個點G、H(G在H的左側(cè)),且GH=2,使得線段GF+FC+CH+HG的長度和為最。蝗绻嬖,求出G、H的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案