【題目】如圖,在△ABC中,∠ABC=90°D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,EBC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過(guò)點(diǎn)D

1)求證:AC⊙O的切線(xiàn);

2)若∠A=60°⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號(hào)和π

【答案】1)證明見(jiàn)試題解析;(2

【解析】試題分析:(1)由OD=OB∠1=∠ODB,則根據(jù)三角形外角性質(zhì)得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,則可根據(jù)切線(xiàn)的判定定理得到AC⊙O的切線(xiàn);

2)由A=60°得到C=30°DOC=60°,根據(jù)含30度的直角三角形三邊的關(guān)系得CD=2,然后利用陰影部分的面積=SCOD﹣S扇形DOE和扇形的面積公式求解.

試題解析:(1)證明:∵OD=OB

∴∠1=∠ODB,

∴∠DOC=∠1+∠ODB=2∠1,

∵∠A=2∠1,

∴∠DOC=∠A,

∵∠A+∠C=90°

∴∠DOC+∠C=90°,

∴OD⊥DC

∴AC⊙O的切線(xiàn);

2)解:∵∠A=60°

∴∠C=30°,∠DOC=60°

Rt△DOC中,OD=2,

CD=OD=2,

陰影部分的面積=SCOD﹣S扇形DOE

=×2×2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶是一座美麗的山坡,某中學(xué)依山而建,校門(mén)A處,有一斜坡AB,長(zhǎng)度為13米,在坡頂B處看教學(xué)樓CF的樓頂C的仰角∠CBF=53°,離B點(diǎn)4米遠(yuǎn)的E處有一花臺(tái),在E處仰望C的仰角∠CEF=63.4°,CF的延長(zhǎng)線(xiàn)交校門(mén)處的水平面于D點(diǎn),F(xiàn)D=5米.

(1)求斜坡AB的坡度i;(2)求DC的長(zhǎng).(參考數(shù)據(jù):tan53°≈,tan63.4°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在ABC中,AB=AC=9,BAC=120°,AD是ABC的中線(xiàn),AE是BAD的角平分線(xiàn),DFAB交AE的延長(zhǎng)線(xiàn)于點(diǎn)F,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,C=90°,AB的垂直平分線(xiàn)DE交AC于D,垂足為E,若A=30°,CD=3.

(1)求BDC的度數(shù).

(2)求AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標(biāo)系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點(diǎn)O′為中心的位似圖形,已知AC=3,若點(diǎn)A′的坐標(biāo)為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,把△ABC 紙片沿 DE 折疊,使點(diǎn) A 落在四邊形 BCED 的內(nèi)部點(diǎn) A′的位置,試說(shuō)明 2∠A=∠1+∠2;

(2)如圖②,若把△ABC 紙片沿 DE 折疊,使點(diǎn) A 落在四邊形 BCED 的外部點(diǎn)A′的位置,寫(xiě)出∠A 與∠1、∠2 之間的等量關(guān)系(無(wú)需說(shuō)明理由);

(3)如圖③,若把四邊形 ABCD 沿 EF 折疊,使點(diǎn) A、D 落在四邊形BCFE 的內(nèi)部點(diǎn) A′、D′的位置,請(qǐng)你探索此時(shí)∠A、∠D、∠1 與∠2 之間的數(shù)量關(guān)系,寫(xiě)出你發(fā)現(xiàn)的結(jié)論并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算張老師在黑板上寫(xiě)了三個(gè)算式,希望同學(xué)們認(rèn)真觀察,發(fā)現(xiàn)規(guī)律

請(qǐng)你結(jié)合這些算式,解答下列問(wèn)題:

(1)請(qǐng)你再寫(xiě)出另外兩個(gè)符合上述規(guī)律的算式;

(2)驗(yàn)證規(guī)律:設(shè)兩個(gè)連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);

(3)拓展延伸:兩個(gè)連續(xù)偶數(shù)的平方差是8的倍數(shù),這個(gè)結(jié)論正確嗎?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:2221=2×211×21=2(  )

 2322=    =2(  ),

 2423=    =2(  ),

……

1)請(qǐng)仔細(xì)觀察,寫(xiě)出第4個(gè)等式;

2)請(qǐng)你找規(guī)律,寫(xiě)出第n個(gè)等式;

3)計(jì)算:21+22+23++2201922020

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案