【題目】已知多項式能被整除,求的值.

【答案】-2.

【解析】

由多項式2x4-3x3+ax2+7x+b能被x2+x-2整除,得到2x4-3x3+ax2+7x+b=Ax2+x-2=Ax-1)(x+2),把x=1x=-2代入,使其值為0列出關(guān)于ab的方程組,求出方程組的解得到ab的值,即可求出原式的值.

∵多項式2x4-3x3+ax2+7x+b能被x2+x-2=x-1)(x+2)整除,

2x4-3x3+ax2+7x+b=Ax2+x-2=Ax-1)(x+2),

當(dāng)x=1時,多項式為2-3+a+7+b=0,即a+b=-6

當(dāng)x=-2時,多項式為32+24+4a-14+b=0,即4a+b=-42,

解得:a=-12,b=6,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD,E、F分別是邊AD、BC的中點,AC分別交BEDF于點M、N.給出下列結(jié)論:①△ABM≌△CDN;②AM=AC;③DN=2NF;④SAMB=ABC;其中正確的結(jié)論是______________(只填序號)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(﹣4,4),一個以A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別交x軸正半軸,y軸負(fù)半軸于E、F,連接EF.當(dāng)AEF是直角三角形時,點E的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市為加快美麗鄉(xiāng)村建設(shè),建設(shè)秀美幸福宿州,對A、B兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個A類美麗村莊和一個B類美麗村莊共需資金300萬元;甲鎮(zhèn)建設(shè)了2A類村莊和5B類村莊共投入資金1140萬元.

(1)建設(shè)一個A類美麗村莊和一個B類美麗村莊所需的資金分別是多少萬元?

(2)乙鎮(zhèn)3A類美麗村莊和6B類村莊改建共需資金多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點B6,0)的直線AB與直線OA相交于點A4,2),動點M在線段OA和射線AC上運(yùn)動.

1)求直線AB的解析式.

2)求OAC的面積.

3)是否存在點M,使OMC的面積是OAC的面積的?若存在求出此時點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P是正方形ABCD邊AB上一點(不與A,B重合),連接PD并將線段PD繞點P順時針旋轉(zhuǎn)90°,得線段PE,連接BE,則∠CBE等于( )

A. 75° B. 60° C. 45° D. 30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人同時各接受了600個零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量(個)與加工時間(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:

(1)點B的坐標(biāo)是________,B點表示的實際意義是___________ _____;

(2)求線段BC對應(yīng)的函數(shù)關(guān)系式和D點坐標(biāo);

(3)乙在加工的過程中,多少分鐘時比甲少加工100個零件?

(4)為了使乙能與甲同時完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少分鐘時開始幫助乙?并在圖中用虛線畫出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖所示,BD,CE的高,點PBD的延長線上,,點QCE上,,探究PAAQ之間的關(guān)系;

2)若把(1)中的改為鈍角三角形,,是鈍角,其他條件不變,上述結(jié)論是否成立?畫出圖形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C⊙O上,且∠AOC30°,點P是直線l上的一個動點(與圓心O不重合),直線CP⊙O相交于另一點Q,如果QPQO,則∠OCP

查看答案和解析>>

同步練習(xí)冊答案