【題目】已知點(diǎn)E、F分別是ABCD的邊BC、AD的中點(diǎn).
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,求AECF的周長.
【答案】(1)證明見解析;(2)20.
【解析】
(1)根據(jù)平行四邊形的判定和性質(zhì)即可得到結(jié)論;
(2)根據(jù)直角三角形的性質(zhì)得到AE=CE=BC=5,推出四邊形AECF是菱形,于是得到結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵點(diǎn)E、F分別是ABCD的邊BC、AD的中點(diǎn),
∴AF=AD,CE=BC,
∴AF=CE,AF∥CE,
∴四邊形AECF是平行四邊形;
(2)∵BC=10,∠BAC=90°,E是BC的中點(diǎn).
∴AE=CE=BC=5,
∴四邊形AECF是菱形,
∴AECF的周長=4×5=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABC的AB邊切于點(diǎn)A,將直角三角板沿BA邊所在的直線向右平移,當(dāng)平移到AC與圓O相切時(shí),該直角三角板的平移距離為( )
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,得出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)不在原圖添加字母和線段,對(duì)△ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A(1,1),B(3,1),規(guī)定把正方形ABCD“先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,這樣連續(xù)經(jīng)過2019次變換后,正方形ABCD的頂點(diǎn)C的坐標(biāo)為( 。
A. (﹣2018,3)B. (﹣2018,﹣3)
C. (﹣2016,3)D. (﹣2016,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“學(xué)習(xí)雷鋒活動(dòng)月”中,某校九(2)班全班同學(xué)都參加了“廣告清除、助老助殘、清理垃圾、義務(wù)植樹”四個(gè)志愿活動(dòng)(每人只參加一個(gè)活動(dòng)).為了了解情況,小明收集整理相關(guān)的數(shù)據(jù)后,繪制如圖所示,不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,廣告清除部分對(duì)應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為2,CF=1,求的長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會(huì)”,全校同時(shí)默寫50首古詩詞,每正確默寫出一首古詩詞得2分,結(jié)果有500名進(jìn)入決賽,從這500名的學(xué)生中隨機(jī)抽取50名學(xué)生進(jìn)行成績分析,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:(最高分98分):
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
Ⅰ.第3組的具體分?jǐn)?shù)為:70,70,70,72,72,74,74,74,76,76,78,78,78,78
Ⅱ.50人得分平均數(shù)、中位數(shù)、眾數(shù)如表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
得分(分) | m | n |
請(qǐng)結(jié)合圖表數(shù)據(jù)信息完成下列各題:
(1)填空a= ,m= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測試成績不低于80分為優(yōu)秀,估計(jì)進(jìn)入決賽的本次測試為的優(yōu)秀的學(xué)生有多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com