拋物線與y軸的交點(diǎn)的坐標(biāo)是(  )
A.(0,3)B.(0,-3)C.(0,D.(0,-
p;【答案】C解析:
p;【解析】略
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梁子湖區(qū)模擬)已知拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn)如圖1,頂點(diǎn)為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q如圖1,直線y=-2x+9與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線
MQ
掃過的區(qū)域的面積;
(3)設(shè)直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D如圖2.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)的取值范圍;
(4)如圖3,將拋物線平移,當(dāng)頂點(diǎn)M移至原點(diǎn)時(shí),過點(diǎn)Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn).試探究:在y軸的負(fù)半軸上是否存在點(diǎn)P,使得∠EPQ=∠QPF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn)如圖1,頂點(diǎn)為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q如圖1,直線y=-2x+9與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線數(shù)學(xué)公式掃過的區(qū)域的面積;
(3)設(shè)直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D如圖2.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)的取值范圍;
(4)如圖3,將拋物線平移,當(dāng)頂點(diǎn)M移至原點(diǎn)時(shí),過點(diǎn)Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn).試探究:在y軸的負(fù)半軸上是否存在點(diǎn)P,使得∠EPQ=∠QPF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線(其中).
【小題1】(1)求該拋物線與x軸的交點(diǎn)坐標(biāo)及頂點(diǎn)坐標(biāo)(可以用含k的代數(shù)式表示);
【小題2】(2)若記該拋物線的頂點(diǎn)坐標(biāo)為,直接寫出的最小值;
【小題3】(3)將該拋物線先向右平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,隨著的變化,平移后的拋物線的頂點(diǎn)都在某個(gè)新函數(shù)的圖象上,求這個(gè)新函數(shù)的解析式(不要求寫自變量的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,).

【小題1】求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
【小題2】設(shè)直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,在直線CD的上方,y軸及y軸的右側(cè)的平面內(nèi)找一點(diǎn)G,使以點(diǎn)G、F、C為頂點(diǎn)的三角形與△COE相似,請(qǐng)直接寫出符合要求的點(diǎn)G的坐標(biāo);
【小題3】如圖,拋物線的對(duì)稱軸與x軸的交點(diǎn)M,過點(diǎn)M作一條直線交∠ADB于T,N兩點(diǎn),①當(dāng)∠DNT=90°時(shí),直接寫出  的值;
②當(dāng)直線TN繞點(diǎn)M旋轉(zhuǎn)時(shí),
試說明: △DNT的面積S△DNT=;
并猜想 :的值是否是定值?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省鄂州市梁子湖區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn)如圖1,頂點(diǎn)為M.
(1)a、b的值;
(2)設(shè)拋物線與y軸的交點(diǎn)為Q如圖1,直線y=-2x+9與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.當(dāng)拋物線的頂點(diǎn)平移到D點(diǎn)時(shí),Q點(diǎn)移至N點(diǎn),求拋物線上的兩點(diǎn)M、Q間所夾的曲線掃過的區(qū)域的面積;
(3)設(shè)直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D如圖2.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)沒有公共點(diǎn)時(shí),試探求其頂點(diǎn)的橫坐標(biāo)的取值范圍;
(4)如圖3,將拋物線平移,當(dāng)頂點(diǎn)M移至原點(diǎn)時(shí),過點(diǎn)Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn).試探究:在y軸的負(fù)半軸上是否存在點(diǎn)P,使得∠EPQ=∠QPF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案