如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(1)證明見(jiàn)解析;(2)GE=BE+GD成立,理由見(jiàn)解析.

試題分析:(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因?yàn)镈F=BE,所以可證出GE=BE+GD成立.
試題解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF(SAS).∴CE=CF.
(2)GE=BE+GD成立.理由是:
∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°.
又∵∠GCE=45°,∴∠GCF=∠GCE=45°.
∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,AB=DC,∠B=∠C.
求證:∠A=∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等腰三角形的頂角為80°,那么它的一個(gè)底角為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,將△ABC折疊,使點(diǎn)C與A重合,得折痕DE,則△ABE的周長(zhǎng)等于__  ___cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,為估計(jì)池塘兩岸邊A,B兩點(diǎn)間的距離,在池塘的一側(cè)選取點(diǎn)O,分別去OA、OB的中點(diǎn)M,N,測(cè)的MN="32" m,則A,B兩點(diǎn)間的距離是       _m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等腰三角形一腰上的高與另一腰的夾角為360,則該等腰三角形的底角的度數(shù)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,AB=10,AC=6,AD是BC邊上的中線,則AD的取值范圍是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

銳角△ABC中,BD和CE是兩條高,相交于點(diǎn)M,BF和CG是兩條角平分線,相交于點(diǎn)N,如果∠BMC=100°,求∠BNC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用邊長(zhǎng)相等的黑色正三角形與白色正六邊形鑲嵌圖案,按圖①②③所示的規(guī)律依次下去,則第n個(gè)圖案中,所包含的黑色正三角形和白色正六邊形的個(gè)數(shù)總和是(  。
A.+4n+2B.6n+1C.+3n+3D.2n+4

查看答案和解析>>

同步練習(xí)冊(cè)答案