如圖,拋物線y=x2+3與x軸交于點(diǎn)A,點(diǎn)B,與直線y=x+b相交于點(diǎn)B,點(diǎn)C,直線y=x+b與y軸交于點(diǎn)E.
(1)寫出直線BC的解析式.
(2)求△ABC的面積.
(3)若點(diǎn)M在線段AB上以每秒1個單位長度的速度從A向B運(yùn)動(不與A,B重合),同時,點(diǎn)N在射線BC上以每秒2個單位長度的速度從B向C運(yùn)動.設(shè)運(yùn)動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關(guān)系式,并求出點(diǎn)M運(yùn)動多少時間時,△MNB的面積最大,最大面積是多少?

【答案】分析:(1)令y=0代入y=x2+3求出點(diǎn)A,B的坐標(biāo).把B點(diǎn)坐標(biāo)代入y=x+b求出BC的解析式.
(2)聯(lián)立方程組求出B.C的坐標(biāo).求出AB,CD的長后可求出三角形ABC的面積.
(3)過N點(diǎn)作NP⊥MB,證明△BNP∽△BEO,由已知令y=0求出點(diǎn)E的坐標(biāo),利用線段比求出NP,BE的長.求出S與t的函數(shù)關(guān)系式后利用二次函數(shù)的性質(zhì)求出S的最大值.
解答:解:(1)在y=x2+3中,令y=0
x2+3=0
∴x1=2,x2=-2
∴A(-2,0),B(2,0)(2分)
又點(diǎn)B在y=x+b上
,
∴BC的解析式為y=x+.(2分)

(2)由,
,
,B(2,0),(2分)
∴AB=4,
.(2分)

(3)過點(diǎn)N作NP⊥MB于點(diǎn)P
∵EO⊥MB
∴NP∥EO
∴△BNP∽△BEO
(1分)
由直線可得:
∴在△BEO中,BO=2,EO=,則BE=

∴NP=t(1分)
∴S=.t.(4-t)=-t2+t(0<t<4)=-(t-2)2+(1分)
∵此拋物線開口向下,
∴當(dāng)t=2時,S最大=
∴當(dāng)點(diǎn)M運(yùn)動2秒時,△MNB的面積達(dá)到最大,最大為.(1分)
點(diǎn)評:本題考查的是二次函數(shù)圖象與應(yīng)用相結(jié)合的綜合題,以及三角形面積的計(jì)算方法,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2+4x與x軸分別相交于點(diǎn)B、O,它的頂點(diǎn)為A,連接AB,AO.
(1)求點(diǎn)A的坐標(biāo);
(2)以點(diǎn)A、B、O、P為頂點(diǎn)構(gòu)造直角梯形,請求一個滿足條件的頂點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點(diǎn)A(x1,0)、B(x2,0),點(diǎn)A在點(diǎn)B的左側(cè).當(dāng)x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點(diǎn)在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點(diǎn),過點(diǎn)M作x軸的垂線MG,垂足為G,過點(diǎn)M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點(diǎn),若M點(diǎn)的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點(diǎn)M,使矩形MNHG的周長最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•揚(yáng)州)如圖,拋物線y=x2-2x-8交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于y軸,在點(diǎn)A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點(diǎn).
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求拋物線頂點(diǎn)M關(guān)于x軸對稱的點(diǎn)M′的坐標(biāo),并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習(xí)冊答案