(2012•南平模擬)如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,在坐標(biāo)平面內(nèi)找一點G,使以點G、F、C為頂點的三角形與△COE相似,請直接寫出符合要求的,并在第一象限的點G的坐標(biāo);
(3)在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;  
(4)將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?

【答案】分析:(1)設(shè)拋物線解析式為y=a(x+2)(x-4),把C的坐標(biāo)代入即可求出a的值,再化成頂點式即可;
(2)求出C的坐標(biāo),過C作CG∥x軸交BF于G,根據(jù)C的坐標(biāo)求出G坐標(biāo);當(dāng)是(4,4)兩三角形全等即相似,當(dāng)是(8,8)時符合相似三角形的判定,即兩三角形相似綜合上述有3個點.
(3)設(shè)直線CD的解析式是y=kx+b,代入坐標(biāo)后求出解析式,設(shè)P(2,t),根據(jù)距離相等列出方程求出即可;
(4)拋物線向上平移,可設(shè)解析式為y=-x2+2x+8+m,把x=4或-8代入即可列出不等式,即可求出答案.
解答:解:(1)設(shè)拋物線解析式為y=a(x+2)(x-4),
把C(0,8)代入得a=-1,
∴y=-x2+2x+8=-(x-1)2+9,頂點D(1,9),
答:拋物線的解析式是:y=-x2+2x+8,頂點D的坐標(biāo)是(1,9).

(2)G(4,8)或(8,8)或(4,4).

(3)假設(shè)滿足條件的點P存在,依題意設(shè)P(2,t),
設(shè)直線CD的解析式是y=kx+b,
把C(0,8),D(1,9)代入得:,
解得:,
∴直線CD的解析式為:y=x+8,
它與x軸的夾角為45°,
設(shè)OB的中垂線交CD于H,則H(2,10).
則PH=|10-t|,點P到CD的距離為
.∴
平方并整理得:t2+20t-92=0,,
∴存在滿足條件的點P,P的坐標(biāo)為,
∴存在,點P的坐標(biāo)是(2,-10+8),(2,-10-8),

(4)解:直線CD的解析式為:y=x+8,
當(dāng)y=0時,x=-8,
當(dāng)x=4時,y=12,
∴E(-8,0),F(xiàn)(4,12).
拋物線向上平移,可設(shè)解析式為y=-x2+2x+8+m(m>0).
當(dāng)x=-8時,y=-72+m,
當(dāng)x=4時,y=m,
∴-72+m≤0或m≤12,
∴0<m≤72.
∴向上最多可平移72個單位長,
答:拋物線向上最多可平移72個單位長度.
點評:本題主要考查了二次函數(shù)圖象與系數(shù)的特征,用待定系數(shù)法求一次函數(shù)的解析式,解一元二次方程和一元一次不等式,一次函數(shù)的點的坐標(biāo)特征等知識點,解此題的關(guān)鍵是綜合運用性質(zhì)進(jìn)行計算,此題綜合性強,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平模擬)如圖:把一張給定大小的矩形卡片ABCD放在寬度為10mm的橫格紙中,恰好四個頂點都在橫格線上,已知α=25°,求長方形卡片的周長.(精確到1mm,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平模擬)我國在2009到2011三年中,各級政府投入醫(yī)療衛(wèi)生領(lǐng)域資金達(dá)8500億元人民幣.將“8500億元”用科學(xué)記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平模擬)圖①是一塊邊長為1,周長記為P1的正三角形紙板,沿圖①的底邊剪去一塊邊長為
1
2
的正三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪如圖掉正三角形紙板邊長的
1
2
)后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則Pn-Pn-1的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平模擬)如圖,有一塊含30°的直角三角板OAB的直角邊長BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把該套三角板放置在平面直角坐標(biāo)系中,且OB=3
3

(1)若雙曲線的一個分支恰好經(jīng)過點A,求雙曲線的解析式;
(2)若把含30°的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好與x軸重疊,點A落在點A′,試求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南平模擬)如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點A、B、C.
(1)用直尺和圓規(guī)畫出該圓弧所在圓的圓心M的位置(不用寫作法,保留作圖痕跡).
(2)若A點的坐標(biāo)為(0,4),D點的坐標(biāo)為(7,0),直線CD與⊙M的位置關(guān)系為
相切
相切
,再連接MA、MC,將扇形AMC卷成一個圓錐,求此圓錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案