【題目】一列長(zhǎng)150米的火車,以每秒15米的速度通過600米的隧道,從火車進(jìn)入隧道口算起,這列火車完全通過隧道所需時(shí)間是
A.60秒
B.30秒
C.40秒
D.50秒

【答案】D
【解析】設(shè)這列火車完全通過隧道所需時(shí)間為x秒, 則得到方程為:15x=600+150,
由題意得:3(a+10)=180,
解得x=50.
所以選D.
解題的關(guān)鍵是讀懂題目意思,特別要抓住火車通過隧道的路程是隧道的長(zhǎng)加上火車的長(zhǎng)度,然后根據(jù)速度×?xí)r間=路程,列出方程求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點(diǎn)OOE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù)

(2)OFOE,COF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五邊形的內(nèi)角和是°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)一班開展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類別

頻數(shù)(人數(shù))

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1

根據(jù)圖表提供的信息,解答下列問題:

(1)八年級(jí)一班有多少名學(xué)生?

(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;

(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了備戰(zhàn)學(xué)校體育節(jié)的乒乓球比賽活動(dòng),某班計(jì)劃買5副乒乓球拍和若干盒乒乓球(多于5盒).該班體育委員發(fā)現(xiàn)在學(xué)校附近有甲、乙兩家商店都在出售相同品牌的乒乓球拍和乒乓球乒乓球拍每副售價(jià)100,乒乓球每盒售價(jià)25元.經(jīng)過體育委員的洽談,甲商店給出每買一副乒乓球拍送一盒乒乓球的優(yōu)惠;乙商店給出乒乓球拍和乒乓球全部九折的優(yōu)惠

1)若這個(gè)班計(jì)劃購買6盒乒乓球則在甲商店付款 ,在乙商店付款 ;

2)當(dāng)這個(gè)班購買多少盒乒乓球時(shí),在甲乙兩家商店付款相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛家裝修,準(zhǔn)備安裝照明燈.他和爸爸到市場(chǎng)進(jìn)行調(diào)查,了解到某種優(yōu)質(zhì)品牌的一盞40瓦白熾燈的售價(jià)為1.5元,一盞8瓦節(jié)能燈的售價(jià)為22.38元,這兩種功率的燈發(fā)光效果相當(dāng).假定電價(jià)為0.45元/度,設(shè)照明時(shí)間為x(小時(shí)),使用一盞白熾燈和一盞節(jié)能燈的費(fèi)用分別為y1(元)和y2(元)[耗電量(度)=功率(千瓦)×用電時(shí)間(小時(shí)),費(fèi)用=電費(fèi)+燈的售價(jià)].
(1)分別求出y1、y2與照明時(shí)間x之間的函數(shù)表達(dá)式;
(2)你認(rèn)為選擇哪種照明燈合算?
(3)若一盞白熾燈的使用壽命為2000小時(shí),一盞節(jié)能燈的使用壽命為6000小時(shí),如果不考慮其他因素,以6000小時(shí)計(jì)算,使用哪種照明燈省錢?省多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列成語描述的事件:①水漲船高;②守株待兔;③水中撈月;④緣木求魚.其中為隨機(jī)事件的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(組):1;(2

查看答案和解析>>

同步練習(xí)冊(cè)答案