附加題:由直角三角形邊角關(guān)系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

【答案】分析:將等式的兩邊同時除以AC和BC,然后利用三角函數(shù)代入,整理即可.
解答:解:由題消去AC、BC、CD,
得到sin(α+β)=sinα•cosβ+cosα•sinβ,
給AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,
兩邊同除以AC•BC得,
sin(α+β)=•sinα+•sinβ,
=cosβ,=cosα,
∴sin(α+β)=sinα•cosβ+cosα•sinβ.
點評:本題為討論型問題,求解過程中運用了三角函數(shù)公式,對邏輯推理能力和運算能力進行考查.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

附加題:由直角三角形邊角關(guān)系,可將三角形面積公式變形,得S△ABC=
1
2
bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得
1
2
AC•BC•sin(α+β)=
1
2
AC•CD•sinα+
1
2
BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②精英家教網(wǎng)
你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關(guān)系》?碱}集(11):1.4 船有觸角的危險嗎(解析版) 題型:解答題

附加題:由直角三角形邊角關(guān)系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關(guān)系》中考題集(23):1.4 船有觸角的危險嗎(解析版) 題型:解答題

附加題:由直角三角形邊角關(guān)系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

科目:初中數(shù)學 來源:第31章《銳角三角函數(shù)》常考題集(14):31.3 銳角三角函數(shù)的應用(解析版) 題型:解答題

附加題:由直角三角形邊角關(guān)系,可將三角形面積公式變形,得S△ABC=bc•sin∠A①,即三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD嗎?不能,說明理由;能,寫出解決過程.

查看答案和解析>>

同步練習冊答案