1
3
a2b3-(-
1
2
a2b3)+(-
1
4
a2b3)
=
分析:先去括號(hào),再合并同類項(xiàng)即可.
解答:解:原式=
1
3
a2b3+
1
2
a2b3-
1
4
a2b3
=
7
12
a2b3
點(diǎn)評(píng):本題考查了整式的加減的應(yīng)用,注意:合并同類項(xiàng)時(shí),把同類項(xiàng)的系數(shù)相加作為系數(shù),字母和字母的指數(shù)不變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知P=[(-2a4b5)÷(-
1
3
a2b3)]2
Q=(-3a3b2)2÷(-
1
2
a3b)
,求P÷Q.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(
2
3
ab2-ab+
3
4
b)•(-
1
2
ab)
=
-
1
3
a2b3+
1
2
a2b2-
3
8
ab2
-
1
3
a2b3+
1
2
a2b2-
3
8
ab2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:(
2
3
ab2-2ab)•
1
2ab
1
2
ab
=
1
3
a2b3-a2b2
1
3
a2b3-a2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)m5÷m2×m;
(2)(
13
a2b3)•(-15a2b2)
;
(3)(a2bc)2÷(ab2c);
(4)(2x2y+3xy2)-(6x2y-3xy2);
(5)(4x+3)(2x-4);
(6)(3a2b-2ab+2ab2)÷(ab);
(7)(a+2b)2-4ab-2(a2-2b2);
(8)(x+2)2-(x+1)(x-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案