隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據統(tǒng)計,某小區(qū)2008年底擁有家庭轎車200輛,2010年底家庭轎車的擁有量達到338輛.
(1)若該小區(qū)2008年底到2010年底家庭轎車擁有量的年平均增長率都相同,求這個年平均增長率;
(2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位,距測算,建造費用分別為室內車位5000元一個,露天車位1000元一個,考慮到實際因數(shù),計劃露天車位的數(shù)量不少于室內車位的2倍,且室內的車位不少于19個,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.
分析:(1)設年平均增長率是x,根據某小區(qū)2008年底擁有家庭轎車200輛,2010年底家庭轎車的擁有量達到338輛可求出增長率;
(2)設建x個室內車位,根據投資錢數(shù)可表示出露天車位,根據計劃露天車位的數(shù)量不少于室內車位的2倍,且室內的車位不少于19個,可列出不等式組求解,進而可求出方案情況.
解答:解:(1)設年平均增長率是x,則
200(1+x)2=338
解得x=30%或x=-230%(舍去).
答:該小區(qū)家庭轎車擁有量的年平均增長率為30%;

(2)設建y個室內車位,露天車位就有:(150000-5000y)÷1000=150-5y,則
150-5y≥2y
y≥19
,
 解得19≤x≤21
3
7

建室內車位19個,露天的就有55個,
建室內車位20個,露天的就有50個,
建室內車位21個,露天的就有45個.
故有這三種方案.
點評:本題考查一元二次方程中增長率的應用及一元一次不等式組的應用,(2)的關鍵是根據室內車位和露天車位的數(shù)量關系列出不等式組求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據統(tǒng)計,某小區(qū)2006年底擁有家庭轎車64輛,2008年底家庭轎車的擁有量達到100輛.
(1)若該小區(qū)2006年底到2009年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2009年底家庭轎車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位.據測算,建造費用分別為室內車位5000元/個,露天車位1000元/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內車位的2倍,但不超過室內車位的3倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

隨著人民生活水平的提高,汽車進入家庭的越來越多.我市某小區(qū)在2007年底擁有家庭轎車64輛,到了2009年底,家庭轎車數(shù)為100輛.
(1)若平均每年轎車數(shù)的增長率相同,求這個增長率.
(2)為了緩解停車矛盾,多增加一些車位,該小區(qū)決定投資15萬元,再造一些停車位.據測算,建造一個室內停車位,需5000元;建造一個室外停車位,需1000元.按實際情況考慮,計劃室外停車位數(shù)不少于室內車位的2倍,又不能超過室內車位的2.5倍.問,該小區(qū)有哪幾種建造方案?應選擇哪種方案最合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

隨著人民生活水平的不斷提高,蕭山區(qū)家庭轎車的擁有量逐年增加.據統(tǒng)計,家景園小區(qū)2008年底擁有家庭轎車144輛,2010年底家庭轎車的擁有量達到225輛.
(1)若該小區(qū)2008年底到2010年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2011年底家庭轎車將達到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資25萬元再建造若干個停車位.據測算,建造費用分別為室內車位6000元/個,露天車位2000元/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內車位的3倍,但不超過室內車位的4.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.為了緩解停車矛盾,某小區(qū)據頂投資15萬元建造若干個停車位.建造費用分別為室內車位5000元/個,露天車位1000元/個,考慮到實際因素,計劃露天車位的數(shù)量不少于室內車位的2倍,但不超過室內車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個?寫出所有可能的方案.

查看答案和解析>>

同步練習冊答案