(2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

【答案】分析:(1)根據(jù)矩形的有三個(gè)角是直角的四邊形是矩形,已知CE⊥AN,AD⊥BC,所以求證∠DAE=90°,我樣可以證明四邊形ADCE為矩形.
(2)根據(jù)正方形的判定,我們可以假設(shè)當(dāng)AD=BC,由已知可得,DC=BC,由(1)的結(jié)論可知四邊形ADCE為矩形,所以證得,四邊形ADCE為正方形.
解答:(1)證明:在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分線,
∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形.

(2)當(dāng)△ABC滿足∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
理由:∵AB=AC,
∴∠ACB=∠B=45°,
∵AD⊥BC,
∴∠CAD=∠ACD=45°,
∴DC=AD,
∵四邊形ADCE為矩形,
∴矩形ADCE是正方形.
∴當(dāng)∠BAC=90°時(shí),四邊形ADCE是一個(gè)正方形.
點(diǎn)評:本題是以開放型試題,主要考查了對矩形的判定,正方形的判定,等腰三角形的性質(zhì),及角平分線的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(07)(解析版) 題型:填空題

(2010•安順)已知:如圖,等腰三角形ABC中,AB=AC=4,若以AB為直徑的⊙O與BC相交于點(diǎn)D,DE∥AB,DE與AC相交于點(diǎn)E,則DE=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省東營市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省德州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•安順)已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•安順)已知:如圖,等腰三角形ABC中,AB=AC=4,若以AB為直徑的⊙O與BC相交于點(diǎn)D,DE∥AB,DE與AC相交于點(diǎn)E,則DE=   

查看答案和解析>>

同步練習(xí)冊答案