【題目】如圖,中,,是中點,是中點,是的外角的角平分線,延長交于點,連接.
(1)求證:四邊形是矩形;
(2)填空:
①若,則四邊形的面積為_______;
②當(dāng)滿足______時,四邊形是正方形.
【答案】(1)見解析;(2)①;②答案不唯一,如當(dāng)時,或者,當(dāng)時,
【解析】
(1)根據(jù)AN是△ABC外角∠CAM的平分線,推得∠MAE=(∠B+∠ACB),再由∠B=∠ACB,得∠MAE=∠B,則AN∥BC,根據(jù)CE⊥AN,得出四邊形ADCE為矩形.
(2)①先證明四邊形ABDE為平行四邊形,由條件可證明△ABC為等邊三角形,求出BD和AD長,則四邊形ABDE的面積可求出;
②由(1)知四邊形ADCE是矩形,增加條件能使AD=DC即可.
(1)∵AN是△ABC外角∠CAM的平分線,
∴∠MAE=∠MAC,
∵∠MAC=∠B+∠ACB,
∵AB=AC,
∴∠B=∠ACB,
∴∠MAE=∠B,
∴AN∥BC,
∵AB=AC,點D為BC中點,
∴AD⊥BC,
∵,是中點, 是的外角的角平分線,
∴AD平分∠BAC, 是的外角的角平分線,
∴CE⊥AN,
∵CE⊥AN,
∴AD∥CE,
∴四邊形ADCE為平行四邊形,
∵CE⊥AN,
∴∠AEC=90°,
∴四邊形ADCE為矩形;
(2)①解:∵AB=AC,D是BC中點,F是AC中點,
∴DF∥AB,
由(1)知AE∥BD,
∴四邊形ABDE是平行四邊形,
∵BC=AB=4,AB=AC,
∴△ABC是等邊三角形,
∴∠ABD=60°,
∵D為BC的中點,
∴∠ADC=90°,BD=2,
∴AD=BDtan60°=2×=2,
故答案為:4;
②解:答案不唯一,如當(dāng)∠BAC=90°時,四邊形ADCE是正方形.
∵∠BAC=90°,AB=AC,
∴△ABC為等腰直角三角形,
∵D為BC的中點,
∴AD=DC,
∵四邊形ADCE為矩形,
∴四邊形ADCE為正方形.
故答案為:∠BAC=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間x(時)成正比例;1.5小時后(包括1.5小時)y與x成反比例.根據(jù)圖中提供的信息,解答下列問題:
(1)寫出一般成人喝半斤低度白酒后,y與x之間的函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。
(1)如果小芳只有一次摸球機會,那么小芳獲得獎品的概率為 ;
(2)如果小芳有兩次摸球機會(摸出后不放回),求小芳獲得2份獎品的概率。(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點對稱的△A2B2C2;
(3)請直接判斷四邊形CBC2B2的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的頂點,,,規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位長度”為一次變換,如此這樣,連續(xù)經(jīng)過2019次變換后,正方形ABCD的對角線的交點M的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑為2的⊙O中,弦AB=,連接OA,OB.在直線OB上取一點K,使tan∠BAK=,則ΔOAK的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一塊腰長為的等腰直角三角板ABC放在平面直角坐標(biāo)系中,點A在y軸正半軸上,直角頂點C的坐標(biāo)為(2,0),點B在第二象限.
(1)求點A,點B的坐標(biāo);
(2)將△ABC沿x軸正方向平移后得到△A′B′C′,點A′,B′恰好落在反比例函數(shù)的圖象上,求平移的距離和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的頂點A、C分別在y軸、x軸上,以AB為弦的⊙M與x軸相切.若點A的坐標(biāo)為(0,8),則圓心M的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與x軸交于點A(-1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式.
(2)若點P在第一象限內(nèi)的拋物線上,且S△PAB=S△OEB,求點P的橫坐標(biāo).
(3)將△OBE以點B為中心順時針旋轉(zhuǎn),旋轉(zhuǎn)角等于2∠OBC,設(shè)點E的對應(yīng)點為點E',點O的對應(yīng)點為點O',求直線O'E'與拋物線的交點坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com