二次函數(shù)y=-x2+bx+c的圖象如圖所示,下列幾個結(jié)論:
①對稱軸為x=2;②當(dāng)y>0時,x<0或x>4;③函數(shù)解析式為y=-x(x-4);④當(dāng)x≤0時,y隨x的增大而增大.其中正確的結(jié)論有______(填寫序號)
由圖象可知對稱軸為x=2,圖象過原點,
∴c=0,-
b
2×(-1)
=2,∴b=4,
∴二次函數(shù)的解析式為y=-x2+4x,
由圖象可知當(dāng)0<x<4時,y>0;
當(dāng)x<2時,y隨x的增大而增大.
正確的有①③④.
故答案為:①③④.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=mx2-(m-5)x-5(m>0)與x軸交于兩點,A(x1,0),B(x2,0)(x1<x2),與y軸交于點C,且AB=6.
(1)求拋物線與直線BC的解析式;
(2)在所給出的直角坐標(biāo)系中作出拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(-6,0)、B(2,0),與y軸交于點C(0,-6).
(1)求此拋物線的函數(shù)表達式,寫出它的對稱軸;
(2)若在拋物線的對稱軸上存在一點M,使△MBC的周長最小,求點M的坐標(biāo);
(3)若點P(0,k)為線段OC上的一個不與端點重合的動點,過點P作PDCM交x于點D,連接MD、MP,設(shè)△MPD的面積為S,求當(dāng)點P運動到何處時S的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c,與x軸交于點A(-3,0),對稱軸為x=-1,頂點C到x軸的距離為2,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=-
2
3
x2+bx+5
的圖象與x軸、y軸的公共點分別為A(5、0)、B,點C在這個二次函數(shù)的圖象上,且橫坐標(biāo)為3.
(1)求這個二次函數(shù)的解析式;
(2)求∠BAC的正切值;
(3)如果點D在這個二次函數(shù)的圖象上,且∠DAC=45°,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

衢江區(qū)某蔬菜基地種植西紅柿,由歷年市場行情得知,從2月1日起的300天內(nèi),西紅柿市場售價 w1與上市時間t的關(guān)系用圖甲的一條折線表示;西紅柿的種植成本 w2與上市時間t的關(guān)系用圖乙表示的拋物線段表示.
(1)求出圖甲表示的市場售價 w1與時間t的函數(shù)關(guān)系式;
(2)求出圖乙表示的種植成本 w2與時間t的函數(shù)關(guān)系式;
(3)市場售價減去種植成本為純收益,當(dāng)0<t≤200時,何時上市西紅柿純收益最大?(售價與成本單位:元/百千克,時間單位:天)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點D在BC上,DEAC,交AB與點E,點F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線型拱橋,其水面寬AB為18米,拱頂O離水面AB的距離OM為8米,貨船在水面上的部分的橫斷面是矩形CDEF,如圖建立平面直角坐標(biāo)系.
(1)求此拋物線的解析式;
(2)如果限定矩形的長CD為9米,那么矩形的高DE不能超過多少米,才能使船通過拱橋;
(3)若設(shè)EF=a,請將矩形CDEF的面積S用含a的代數(shù)式表示,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

取一張矩形的紙進行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應(yīng)點為B′,得Rt△AB′E,如圖(2)所示;
第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.

探究:
(1)△AEF是什么三角形?證明你的結(jié)論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
(3)如圖(5),將矩形紙片ABCD沿EF折疊,使點A落在DC邊上的點A′處,x軸垂直平分DA,直線EF的表達式為y=kx-k (k<0)
①問:EF與拋物線y=-
1
8
x2
有幾個公共點?
②當(dāng)EF與拋物線只有一個公共點時,設(shè)A′(x,y),求
x
y
的值.

查看答案和解析>>

同步練習(xí)冊答案