【題目】作圖并填空

如圖,在RtABC,∠BAC90°ADBCD,在②③圖中,MNAB,∠MNE=∠B,現(xiàn)要以②③圖為基礎(chǔ),在射線NE上確定一點(diǎn)P,構(gòu)造出一個(gè)△MNP與①圖中某一個(gè)三角形全等.

(1)用邊長(zhǎng)限制P點(diǎn),畫法:_____,可根據(jù)SAS,AASASA,HL中的______得到______

(2)用直角限制點(diǎn)P,畫法:_______,可根據(jù)SASAAS,ASAHL中的______得到______

【答案】(1)作NPBC;SAS;△MNP≌△ABC;(2)MMCMN;ASA;△MNP≌△ABC

【解析】

(1)NP=BC,即可證明△MNP≌△ABC,即可解題;

(2)MMCMN,可證明△MNP≌△ABC,可得答案.

證明:(1)NPBC

∵在△MNP和△ABC中,,

∴△MNP≌△ABC,(SAS)

(2)MMCMN,

∵在△MNP和△ABC中,,

∴△MNP≌△ABC,(ASA)

故答案為:NPBC;SAS;△MNP≌△ABC;過MMCMN;ASA;△MNP≌△ABC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,AB6cm,BC8cm,動(dòng)點(diǎn) P 2cm/s 的速度從點(diǎn) A 出發(fā),沿AC 向點(diǎn) C 移動(dòng),同時(shí)動(dòng)點(diǎn) Q 1cm/s 的速度從點(diǎn) C 出發(fā),沿 CB 向點(diǎn) B 移動(dòng),設(shè) PQ 兩點(diǎn)移動(dòng) ts0t5)后,CQP 的面積為 Scm2.在 P、Q 兩點(diǎn)移動(dòng)的過程中,CQP 的面積能否等于 3.6cm2?若能,求出此時(shí) t 的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點(diǎn)C0,2),它的頂點(diǎn)為D1,m),且.

1)求m的值及拋物線的表達(dá)式;

2)將此拋物線向上平移后與x軸正半軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=OB.若點(diǎn)A是由原拋物線上的點(diǎn)E平移所得,求點(diǎn)E的坐標(biāo);

(3)在(2)的條件下,點(diǎn)P是拋物線對(duì)稱軸上的一點(diǎn)(位于x軸上方),且APB=45°.求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線AB:y=﹣x+b分別與x,y軸交于A(6,0)、B 兩點(diǎn),過點(diǎn)B的直線交x軸負(fù)半軸于C,且OB:OC=3:1.

(1)求點(diǎn)B的坐標(biāo).

(2)求直線BC的解析式.

(3)直線 EF 的解析式為y=x,直線EFAB于點(diǎn)E,交BC于點(diǎn) F,求證:SEBO=SFBO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)CCE∥BD,過點(diǎn)DDE∥AC,CEDE相交于點(diǎn)E

1)求證:四邊形CODE是矩形.

2)若AB=5AC=6,求四邊形CODE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】行駛中的汽車,在剎車后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱為“剎車距離”.為了測(cè)定某種型號(hào)汽車的剎車性能,對(duì)這種汽車的剎車距離進(jìn)行測(cè)試,測(cè)得的數(shù)據(jù)如下表:

剎車時(shí)車速(千米/時(shí))

0

5

10

15

20

25

30

剎車距離(米)

0

0.1

0.3

0.6

1

1.6

2.1

(1)在如圖所示的直角坐標(biāo)系中,以剎車時(shí)車速為橫坐標(biāo),以剎車距離為縱坐標(biāo),描出這些數(shù)據(jù)所表示的點(diǎn),并用平滑的曲線連結(jié)這些點(diǎn),得到某函數(shù)的大致圖象;

(2)測(cè)量必然存在誤差,通過觀察圖象估計(jì)函數(shù)的類型,求出一個(gè)大致滿足這些數(shù)據(jù)的函數(shù)表達(dá)式;

(3)一輛該型號(hào)汽車在高速公路上發(fā)生交通事故,現(xiàn)場(chǎng)測(cè)得剎車距離約為40米,已知這條高速公路限速100千米/時(shí),請(qǐng)根據(jù)你確定的函數(shù)表達(dá)式,通過計(jì)算判斷在事故發(fā)生時(shí),汽車是否超速行駛.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請(qǐng)求出天橋總長(zhǎng)和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時(shí)從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時(shí)多用了12.8s,請(qǐng)求出馬路寬度AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EAD邊上一點(diǎn),連接CE,把CDE沿CE翻折,得到CPE,EPAC于點(diǎn)F,CPBD于點(diǎn)G,連接PO,若POBC,則四邊形OFPG的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生體育測(cè)試情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,?/span>A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:

(說明:A級(jí):90分~100分;B級(jí):75分~89分;C級(jí):60分~74分;D級(jí):60分以下)

1)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)扇形統(tǒng)計(jì)圖中D級(jí)所在的扇形的圓心角度數(shù)是多少?

3)若該校九年級(jí)有600名學(xué)生,請(qǐng)用樣本估計(jì)體育測(cè)試中A級(jí)學(xué)生人數(shù)約為多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案